Skip to main content

Light Field Displays

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 46 Accesses

Abstract

Light field displays (LFDs) provide natural and comfortable viewing of 3D content. The generalized light field can be described by a 7D plenoptic function. This can be simplified into a 4D light field that can be decomposed into 2D resolution sample and view sample planes. Different architectures, known as light field 1.0 and light field 2.0, that respectively prioritize depth or resolution can be created based on the relative order of the two planes. Different trade-offs are made to implement light field displays depending on whether they are meant for direct viewing (multiuser) or personal viewing (near-eye). Direct-view displays can be based on scanning, array of projectors, or multilayer optical stack. The two main multilayer approaches are the traditional integral imaging stack with a 2D matrix display and 2D optics array, using micro-lenses or apertures, and a compressive display with a directional backlight and a stack of liquid crystal panels. Head-mounted LFDs can be multifocal plane, integral imaging-based, or computational multilayer. These can be immersive displays for virtual reality applications or optical see-through for augmented reality. A generalized end-to-end system model for LFDs can be used to guide the design based on the requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AR:

Augmented reality

CDP:

Central depth plane

DFD:

Depth-fused 3D

DMD:

Digital micromirror device

DOF:

Depth of field

FOV:

Field of view

FP:

Focal plane

HMD:

Head-mounted display

HVS:

Human visual system

InI:

Integral imaging

LF:

Light field

LF-3D:

Light field 3D

LFD:

Light field displays

LF-HMD:

Light field head-mounted display

MFP:

Multifocal plane

micro-InI:

Microscopic INI

MLA:

Micro-lens array

OST:

Optical see-through

S3D:

Stereoscopic three-dimensional

SLM:

Spatial light modulator

VAC:

Vergence-accommodation conflict

VFE:

Varifocal element

VR:

Virtual reality

References

  • Adelson EH, Bergen JR (1991) The plenoptic function and the elements of early vision. In: Landy M, Movshon JA (eds) Computational models of visual processing. MIT, Cambridge, MA

    Google Scholar 

  • Akeley K, Watt SJ, Girshick AR, Banks MS (2004) A stereo display prototype with multiple focal distances. ACM Trans Graph 23:804–813

    Article  Google Scholar 

  • Cheng D, Wang Q, Wang Y, Jin G (2013) Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms. Chin Opt Lett 11(3):031201

    Article  Google Scholar 

  • Fukano K et al (2021) Light field display using virtual imaging mode. In: SID symposium

    Google Scholar 

  • Hoffman D, Girshick A, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):33

    Article  Google Scholar 

  • Hu X, Hua H (2014a) Design and assessment of a depth-fused multi-focal-plane display prototype. Disp Technol J 10:308–316

    Article  Google Scholar 

  • Hu X, Hua H (2014b) High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Opt Express 22(11):13896–13903

    Article  Google Scholar 

  • Hua H, Javidi B (2014) A 3D integral imaging optical see-through head-mounted display. Opt Express 22(11):13484–13491

    Article  Google Scholar 

  • Huang H, Hua H (2017) Systematic characterization and optimization of 3D light field displays. Opt Express 25(16):18508–18525

    Article  Google Scholar 

  • Huang H, Hua H (2018) High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt Express 26:17578

    Article  Google Scholar 

  • Huang H, Hua H (2019) Effects of ray position sampling on the visual responses of 3D light field displays. Opt Express 27(7):9343–9360

    Article  Google Scholar 

  • Huang F, Chen K, Wetzstein G (2015) The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. In: Proceedings of ACM SIGGRAPH (ACM Transaction on Graphics), vol 33(5)

    Google Scholar 

  • Ives F (1902) A novel stereogram. J Franklin Inst 153:51–52

    Article  Google Scholar 

  • Jones A et al (2007) Rendering for an interactive 360o light field display. In: SIGGRAPH

    Google Scholar 

  • Kim Y, Kim J, Hong K, Yang HK, Jung J, Choi H, Min S, Seo J, Hwang J, Lee B (2012) Accommodative response of integral imaging in near distance. J Disp Technol 8:70–78

    Article  Google Scholar 

  • Klug M et al (2013) A scalable, collaborative, interactive light-field display system. In: SID international symposium

    Google Scholar 

  • Lanman D, Luebke D (2013) Near-eye light field displays. In: Proceedings of ACM SIGGRAPH (ACM Transaction on Graphics)

    Google Scholar 

  • Lee J-H et al (2013) Optimal projector configuration design for 300-Mpixel light field 3D display. In: SID symposium

    Google Scholar 

  • Levoy M, Hanrahan P (1996) Light field rendering. In: SIGGRAPH’96

    Google Scholar 

  • Lippmann G (1908) Épreuves réversibles. Photographies integrals. C R Acad Sci 146(9):446–451

    Google Scholar 

  • Liu S, Hua H (2009) Time-multiplexed dual-focal plane head-mounted display with a fast liquid lens. Opt Lett 34(11):1642–1644

    Article  Google Scholar 

  • Liu S, Hua H (2010) A systematic method for designing depth-fused multi-focal plane three-dimensional displays. Opt Express 18(11):11562–11573

    Article  Google Scholar 

  • Liu X, Li H (2014) The progress of light field 3-D displays. In: Information Display Magazine, 14 June 2014

    Google Scholar 

  • Love GD, Hoffman DM, Hands PJW, Gao J, Kirby AK, Banks MS (2009) High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt Express 17(18):15716–15725

    Article  Google Scholar 

  • Maimone A, Wetzstein G, Hirsch M, Lanman D, Raskar R, Fuchs H (2013) Focus 3d: compressive accommodation display. ACM Trans Graph 32(5):153:1–153:3

    Article  Google Scholar 

  • Maimone A, Lanman D, Rathinavel K, Keller K, Luebke D, Fuchs H (2014) Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans Graph 33(4):1–11

    Article  Google Scholar 

  • McQuaide SC, Seibel EJ, Kelly JP, Schowengerdt BT, Furness TA (2003) A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror. Displays 24(2):65–72

    Article  Google Scholar 

  • Rolland JP, Kureger M, Goon A (2000) Multifocal planes head-mounted displays. Appl Opt 39(19):3209–3214

    Article  Google Scholar 

  • Stern A, Yitzhaky Y, Javidi B (2014) Perceivable light fields, matching the requirements between the human visual system and autostereoscopic 3-D displays. Proc IEEE 22(10):1571–1587

    Article  Google Scholar 

  • Suyama S, Ohtsuka S, Takada H, Uehira K, Sakai S (2004) Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths. Vis Res 44(8):785–793

    Article  Google Scholar 

  • Takaki Y (2006) High-density directional display for generating natural three-dimensional images. Proc IEEE 94:654–663

    Article  Google Scholar 

  • Wang X, Hua H (2021) Depth-enhanced head-mounted light field displays based on integral imaging. Opt Lett 46:985–988

    Article  Google Scholar 

  • Wetzstein G, Lanman D, Hirsch M, Raskar R (2012) Tensor displays: compressive light field synthesis using multi-layer displays with directional backlighting. In: SIGGRAPH

    Google Scholar 

  • Xia X et al (2010) Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen. Appl Opt 49:4915–4920

    Article  Google Scholar 

  • Xia X et al (2013) A 360-degree floating 3D display based on light field regeneration. Opt Express 21:11237–11247

    Article  Google Scholar 

  • Xu M, Hua H (2020a) Geometrical-lightguide-based head-mounted lightfield displays using polymer-dispersed liquid crystal films. Opt Express 28(14):21165–21181

    Google Scholar 

  • Xu M, Hua H (2020b) Systematic method for modeling and characterizing multilayer light field displays. Opt Express 28(2):1014–1036

    Article  Google Scholar 

  • Zhang H et al (2021) High-resolution integral imaging 3D display system. In: SID symposium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hua .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hua, H., Balram, N. (2023). Light Field Displays. In: Blankenbach, K., Yan, Q., O'Brien, R.J. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_218-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_218-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35947-7

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics