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Abstract

The aim of this article is to give an alternative proof of the char-
acterization of the torsion-free rank of Ext1(A,Z) for countable
torsion-free abelian groups A with torsion-free rank equals to 1,
without using Stein’s Theorem. This leads to the characterization
of the torsion-free rank of Ext1(A,Z) given in Eklof and Mekler’s
book Almost Free Modules. As a result, Whitehead’s conjecture is
verified for the case of countable groups.
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1 Introduction

Whitehead’s problem states that a commutative group
A is free if and only if its associated group Ext1(A,Z) is
trivial. Groups satisfying the latter property are called
Whitehead’s groups, from here onwards W-groups.

Whitehead’s problem appeared at the beginning of
the fifties of the past century. In 1951 it was proved
by Stein [7] that every countable W-group is free. For
what concerns larger W-groups the first major result is
due to Saharon Shelah [6]: in an unexpected turn of
events in 1974, he proved that, at least for cardinality
ℵ1, Whitehead’s Problem is undecidable on the basis
of ZFC set theory, by showing that both the affirma-
tive or negative answers to Whitehead’s Problem are
consistent with ZFC (Zermelo-Fraenkel set theory with
Choice).

The article sticks to the case of countable abelian
groups: we will follow Chase’s ([1], 1963) approach,
which uses homological algebraic tools and passes through
the characterization of Ext1(A,Z) in terms of a set of
cardinals, called the torsion-free rank and p-ranks. The
core of the article is Section 5: we offer an alternative
proof of the characterization of the torsion-free rank
of Ext1(A,Z) for a countable group A of torsion-free
rank equal to 1. The overall architecture of the proof is

similar to the one presented for instance in the book Al-
most Free Modules ([4, XII, Thm. 4.1]). However, the
methods stay away from set theory and our proof does
not use Stein’s Theorem (the countable case of White-
head’s Problem), but rather implies it (Corollary 5.11).
For completeness of the discussion we include the proof
of Chase’s Characterization, which states that the tor-
sion free rank of Ext1(A,Z) is equal to 2ℵ0 , whenever
A is a countable torsion-free group which is not free.

In section 2, we introduce notation and recall the
tools of abstract and homological algebra used. The
definition of the ranks of a group is contained in the
third section, and so is Pontryagin’s Criterion. The re-
duction to the case when A is torsion-free (under which
assumption the group Ext1(A,Z) is injective, see sec-
tion 6) is contained in the fourth section.

The main references are Fuchs’s book Infinite Abelian
Groups and Eklof and Mekler’s book Almost Free Mod-
ules, Set-theoretic Methods, whose content the article
stays close to.

2 Notation and Recollections

Unless otherwise specified, in what follows “ring” will
be a shorthand for “commutative ring with identity”
and “group” will be a shorthand for “abelian group”.
The group of homomorphisms between two groups A
and B will be denoted by Hom(A,B): instead, if we
consider morphisms of R modules with R a ring differ-
ent from Z we will use the notation HomR. Given a
group A, for each prime number p, we denote by Ap the
subgroup of A

{a ∈ A : ∃k ∈ N s.t. ord(a) = pk}

where ord(a) (the order of a) is the least n ∈ N \ {0}
such that n · a = 0. The subgroup Ap is called the p-
component of A. In what follows, we will make largely
use of p-components of the quotient group Q/Z (us-
ing addition of rational numbers as group operation),
which go under the name of Prüfer p-groups and are
denoted by Z(p∞). In particular in Section 5, we will
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3 The ranks of a group 11

use the connection between the Prüfer p-group and Zp,
the group of p-adic integers, stated in the following the-
orem.
Theorem 2.1. [5, Prop. 5.26 - Ex. 5.20] The group
of endomorphisms of Z(p∞) is isomorphic to the group
of p-adic integers (Zp,+), i.e. EndZ(Z(p∞)) ∼= Zp.

Another statement which we will make use of, and
which involves Prüfer groups, is the following.
Lemma 2.2. [2, Cor. 43.4] Let T (A) be the torsion
subgroup of a group A. Then

Hom(T (A),Q/Z) ∼=
∏
p

Hom(Tp(A),Z(p∞))

where Tp(A) is the p-components of T (A) as p ranges
over the primes.

A recurrent notion in this article is that of a divisible
group: more generally, an R-module M is said to be
divisible if

M = r ·M = {r ·m : m ∈M} ∀r ∈ R \ {0}.

Example 2.3. Both Q and Q/Z are divisible groups.
Also Prüfer groups Z(p∞) are examples of divisible groups.
Remark 2.4. Over a commutative PID R, divisible
modules are the same as injective modules [5, Corollary
3.35], i.e. modules I for which HomR(−, I) is an exact
functor. Hence, since abelian groups are Z-modules,
an equivalent condition for a group A to be divisible is
being injective.
Example 2.5. The condition of R being a PID is nec-
essary, otherwise there could be divisible R-modules
which are not injective. For example, consider R =
Z[x] and its field of fractions Q(x): then the quotient
Q(x)/Z[x] is a divisible Z[x]-module but it is not injec-
tive.

Let A and B be abelian groups: viewing them as
Z-modules, we consider the right derived functors of
Hom(A;−), denoted by Exti(A;−) for i ≥ 0, and the
left derived functors of Hom(−;B), denoted by Exti(−;B).
By virtue of the so-called Balance of Ext Theorem (whose
proof can be found in Lang’s book [3, Cor. XX.8.5] for
instance), there is an isomorphism

Exti(A;−)(B) ∼= Exti(−;B)(A), ∀i ≥ 0,

which leads to use the same notation Exti(A;B) for
both. Observe that this double characterization allows
to use injective resolutions for B as well as projective
ones for A in order to compute Exti(A;B).
Remark 2.6. Let A,B be abelian groups. Since Z is a
commutative PID, the groups Exti(A,B) are all trivial
for i ≥ 2. Therefore, given a short exact sequence of
abelian groups

0 −→ A′ −→ A −→ A′′ −→ 0,

the long exact sequence induced by Hom(−;B) is then
0 −→ Hom(A′′, B) Hom(A, B) Hom(A′, B)

Ext1(A′′, B) Ext1(A, B) Ext1(A′, B) −→ 0.

The same holds for the functor Hom(A,−). For a de-
tailed discussion of these basic but very deep results
of Homological Algebra see Rootman’s book An Intro-
duction of Homological Algebra (in particular Chapter
6).

Lastly, the following property Ext1(−, B) follows from
the one of Hom(−, B).
Theorem 2.7. [2, Thm. 52.2] Let {Ai}i∈I , B be all
abelian groups. Then

Ext1
⊕
i∈I
Ai, B

 ∼= ∏
i∈I

Ext1(Ai, B).

3 The ranks of a group

In this section we focus on subgroups of abelian groups
that are direct sums of cyclic groups. We will use sub-
groups which are maximal with respect to this property
to define cardinal numbers depending only on A. This
will lead to the definition of ranks of A, which extends
to groups the notion of dimension for vector spaces.

We next define the ranks and review important the-
orems that will allow us to understand the structure of
Ext1(A,Z). The omitted proofs can be found in Chap-
ters 16, 19 and 23 of [2].

We recall that by an independent system L = {ai}i∈I
of non-zero elements of a group A one means that for
each finite subsystem of {a1, ... an} ⊆ L

k∑
i=1
niai = 0 (ni ∈ Z) =⇒ niai = 0 ∀i ∈ {1, ... , k}.

Given an independent system L, an element g ∈
A\{0} is dependent on L if there existm,n1, ... , nk ∈ Z
and a1, ... , ak ∈ L such that

mg =
k∑
i=1
niai 6= 0.

An independent system M of A is maximal if there
is no independent system in A containing M properly.
Definition 3.1. Given a group A, let M0 be an in-
dependent system of A containing only elements of in-
finite order, maximal with respect to this property1.
The torsion-free rank of A, denoted by r0(A), is the
cardinality of M0.

Analogously, for p ranging over the prime numbers,
define the p-rank rp(A) of A as the cardinality of an in-
dependent system Mp which contains only p-elements,
namely the elements whose order is a power of p.

1 Zorn’s Lemma ensures its existence.
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It happens that for any group A the cardinals r0(A)
and rp(A) are independent respectively of the maximal
systems M0 and Mp chosen to compute them.
Theorem 3.2. [2, Thm. 16.3] For any group A the
cardinals r0(A) and rp(A) do not depend on the chosen
maximal independent systems M0 and Mp, for any p:
hence we have a well defined notions of torsion-free rank
and p-ranks for A.
Example 3.3. In order to get a little more acquainted
with the definitions of ranks, let us compute them for
Q and for Prüfer groups Z(p∞).

For the field Q, since any element a/b ∈ Q∗ is de-
pendent on {1} ( b·a/b = a·1 ), a maximal independent
system M0 is {1}. Thus the torsion-free rank r0(Q) is
equal to 1: moreover, since there is no-torsion in Q,
then all the p-ranks rp(Q) are null.

Instead, since the group Z(p∞) is defined as the p-
component of a group, its torsion-free rank r0(Z(p∞))
and q-ranks rq(Z(p∞)) with q 6= p are trivial. How-
ever the p-rank rp(Z(p∞)) is equal to 1: indeed {1/p}
is a maximal system of p-elements, since any non-null
element a/pk ∈ Z(p∞) = (Q/Z)p with (a, p) = 1 is
dependent on 1/p ( pk−1 · a/pk = a · 1/p 6= 0 ).

In terms of ranks a useful statement can be for-
mulated, which establishes a criterion for determining
whether a countable group is free.
Theorem 3.4. [2, Thm. 19.1] (Pontryagin’s Crite-
rion) A countable torsion-free group A is free if and
only if every finite rank subgroup is free.

The importance of the ranks for a group is linked
to the existence of a complete classification of divisible
groups in terms of the torsion-free rank and p-rank,
provided by the following theorem.
Theorem 3.5. [2, Thm. 23.1] Any divisible group A
is a direct sum of copies of Prüfer groups Z(p∞) and
copies of Q. More precisely, one has the decomposition

A ∼= Q⊕r0(A) ⊕
⊕
p

Z(p∞)⊕rp(A)

where p runs over the primes.

4 The Whitehead problem: reduction to the
torsion-free case

Recall that aW-group is a groupA such that Ext1(A,Z) =
0. If A is a free abelian group, then it is projective and
so a projective resolution for A is

0 −→ A
id−→ A −→ 0.

This means that Ext1(A,Z) is trivial. Therefore free
abelian groups are W-groups. The Whitehead’s prob-
lem asks whether it is possible to find a W-group which
is not free. In any case, if a group A has Ext1(A,Z)
trivial, then it cannot have torsion.

Proposition 4.1. Any W-group is torsion-free.

Proof. Let A be a group and T (A) its torsion subgroup:
pick and element a ∈ T (A) and consider the cyclic
subgroup 〈a〉A generated by a. Applying the functor
Hom(−,Z) to the short exact sequence

0 −→ 〈a〉 −→ A −→ A/〈a〉 −→ 0,

by Remark 2.6 we obtain the following long exact se-
quence in cohomology

0 −→ Hom(A/〈a〉,Z) Hom(A,Z) Hom(〈a〉,Z)

Ext1(A/〈a〉,Z) Ext1(A,Z) Ext1(〈a〉,Z) −→ 0.

In particular, this gives a surjective map Ext1(A,Z) �
Ext1(〈a〉,Z): therefore if A is a W-group, Ext1(A,Z) =
0 and so is Ext1(〈a〉,Z). Since the subgroup 〈a〉 is iso-
morphic to Z/nZ (where n is the order of a), we have
Ext1(〈a〉,Z) ∼= Ext1(Z/nZ,Z). But then, since the pro-
jective resolution

0 −→ Z ·n−→ Z −→ Z/nZ −→ 0

leads to the exact sequence

Hom(Z/nZ,Z) = 0 −→ Hom(Z,Z) ·n−→ Hom(Z,Z)

Ext1(Z/nZ,Z) −→ 0

we get Ext1(Z/nZ,Z) ∼= Z/nZ, which is a contradic-
tion.

Therefore, when one tackles Whitehead’s problem
there is no loss of generality in assumingA to be torsion-
free. In what follows, we are going to study the torsion-
free rank of Ext1(A,Z), which will lead to the conclu-
sion that all countable W-group are free.
Remark 4.2. Saharon Shelah [6] proved that, for groups
whose cardinality is the smallest uncountable, White-
head’s Problem is undecidable. Indeed, in this context,
both the affirmative and negative answers to White-
head’s problem are consistent with the set of ZFC ax-
ioms. That is to say, neither the affirmative nor the
negative statement implies a contradiction within ZFC.

5 The torsion-free rank of Ext1(A,Z)

5.1 Preparatory Lemmas
Before discussing the ranks of Ext1(A,Z), we prove
some lemmas we need.
Lemma 5.1. If A is torsion-free then

|A| ≤ max{r0(A),ℵ0}.
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Proof. Let M be an independent maximal system for
A. Since A is torsion-free, every element of M has
infinite order. For g ∈ A \ {0}, the system {M, g} is
no longer independent, which means that there exist
n, n1, ... , nk ∈ Z and a1, ... , ak ∈M such that

ng =
k∑
i=1
niai.

Assume ng′ = ng, then n(g′−g) = 0, giving that g′ = g
(since A is torsion-free). So one can injectively associate
a tuple {n, n1, ... , nk, a1, ... , ak} to each element of A.
It follows that

|A| ≤

∣∣∣∣∣∣
⊔
k∈N

Zk+1 ×Mk

∣∣∣∣∣∣
=

∑
k∈N
|M | · ℵ0 = max{|M |,ℵ0}.

This proof is outlined following how Fuchs shows
that the definition of ranks is well-posed (see Infinite
Abelian Groups, [2, Thm. 16.3]).
Lemma 5.2. Let A and B be two groups. If there exists
f : A −→ B surjective map or g : B −→ A injective
map, then r0(A) ≥ r0(B).
Proof. Let f : A −→ B be a surjective map and let
M = {bj}i∈J be an independent system of B, max-
imal with respect to the property of containing only
elements of infinite order. By taking the preimages of
the elements we obtain a system M ′ = {aj}j∈J such
that bj = f(aj) for all j ∈ J . If n1aj1 + ...+ nkajk = 0,
then n1bj1 + ...+nkbjk = 0 and, by the independence of
M , we have that nhbjh = 0, giving that nh = 0 for all
h = 1, ... , k, since ord(bjh) is not finite. Hence M ′ is an
independent system containing only elements of infinite
order. The proof of the second part of the assumption
is analogous.
Lemma 5.3. Let A be a group whose torsion-free rank
is an infinite cardinal number and let B be a subgroup
such that r0(B) < r0(A): then r0(A/B) = r0(A).
Proof. Pick a maximal independent system {aj}j∈r0(B)
of element of B of infinite order and extend it to a
maximal independent system {ai}i∈r0(A) of element of
A of infinite order. Since r0(B) < r0(A) there exists a
subset S of r0(A) \ r0(B) of cardinality equal to r0(A)
such that ai 6= aj in A/B for all i, j ∈ S. Let {i1, ... , ik}
be indices in S, and let n1, ... , nk be integer numbers.
Assume

n1 · ai1 + ... + nk · aik = 0.
Then n1 ·ai1 +... +nk ·aik ∈ B. This means that the ele-
ment n1 ·ai1 + ... +nk ·aik depends on {aj}j∈r0(B). Since
{ai1 , ... , aik} ∪ {aj}j∈r0(B) is an independent system, it
follows that n1 ·ai1 +... +nk ·aik = 0. Hence the integers

nh are all 0 for all h ∈ {1, ... , k}, therefore {ai}i∈S is
an independent system of element of infinite order for
A/B. By Lemma 5.2, we have r0(A/B) ≤ r0(A), which
implies that r0(A) = |S| ≤ r0(A/B) ≤ r0(A).
Lemma 5.4. If A is a torsion-free group of rank 1 then
it is isomorphic to a subgroup of Q.

Proof. Fix a maximal independent system, {a}: then
for all g ∈ A \ {0} there exists a least mg ∈ N∗ such
that mgg = nga, with ng ∈ N∗ (observe that ng is
unique). Consider the function f : A −→ Q that maps
a into 1, 0 into 0 and g into ng

mg
: obviously f is injective,

and we claim that it is also a homomorphism: If g and
h are respectively mapped into ng

mg
and nh

mh
, then

(ngmh + nhmg) · a = mhng · a+mgnh · a
= mhmg · g +mgmh · h
= mgmh · (g + h).

If g + h is mapped into k
l then l(g + h) = ka and,

multiplying by mgmh,

kmgmh · a = lmgmh · (g + h) = l(ngmh + nhmg) · a.

Since A is torsion-free,

l(ngmh + nhmg) = kmgmh.

Thus
ng
mg

+ nh
mh

= (ngmh + nhmg)
mgmh

= k

l
,

as was to be shown.

5.2 Base Case: A of torsion-free rank 1
Now we are ready to study the torsion-free rank of
Ext1(A,Z).
Lemma 5.5. If A is a countable torsion-free abelian
group then r0(Ext1(A,Z)) ≤ 2ℵ0. If in addition A is
free, then Ext1(A,Z) = 0.
Proof. Consider the injective resolution of Z

0 −→ Z −→ Q π−→ Q/Z −→ 0

and apply the functor Hom(A,−) to it. We obtain the
long exact sequence in cohomology

0 −→ Hom(A,Z) −→ Hom(A,Q) π∗−→ Hom(A,Q/Z)

Ext1(A,Z) −→ 0

given that Ext1(A,Q) = 0 (beingQ a divisible group).
Therefore we have

Ext1(A,Z) ∼=
Hom(A,Q/Z)
π∗(Hom(A,Q))
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and this implies that |Ext1(A,Z)| ≤ |Hom(A,Q/Z)| ≤
ℵ0
ℵ0 . Hence r0(Ext1(A,Z)) ≤ 2ℵ0 .
If in addition A is free, as observed at the beginning

of Section 4, then Ext1(A,Z) is trivial.
To proceed in the analysis we need the following:

Proposition 5.6. Let A be a non-free subgroup of Q
containing Z: then there exists a prime number p such
that 1/pk ∈ A for infinitely many k or there are in-
finitely many primes q such that 1/q ∈ A.
Remark 5.7. Before getting into the proof, recall that
for relatively prime numbers m and n, we have that
m/n ∈ A if and only if 1/n ∈ A. Indeed, by Bézout
identity, you can pick integers s and t such that sm +
tn = 1, or equivalently s · (m/n) + t = 1/n.

If 1/m also belongs to A, then 1/m + 1/n = (m +
n)/mn is an element of A too and so is 1/mn, since
m+n and mn are relatively primes. It follows that, for
relatively prime numbers m and n, we have 1/mn ∈ A
if and only if both 1/m and 1/n belong to A.
Proof. Let us suppose that for each prime p there exists
a maximum power of p, pn, such that 1/pn ∈ A and
that there are finitely many primes {p1, ... , pk} such
that 1/pj ∈ A for any j = 1, ... , k. Let nj be the
maximum exponent of pj such that 1/pnjj ∈ A for each
j = 1, ... , k. Since pnjj , pnii are relatively prime for each
i 6= j, by Remark 5.7

y = 1
pn1

1 · . . . · p
nk
k

∈ A.

Pick now an element h in the complement A\〈y〉 (it ex-
ists since 〈y〉 ( A, otherwise A would be free). Assume
h = s/r with s, r relatively prime. By Remark 5.7 we
get 1/r ∈ A but 1/r 6∈ 〈y〉 still. Let r = qm1

1 · ... · qms
s be

the factorization in prime numbers qi’s. The we have

1
qmi
i

=
(∏
l 6=i
qml

l

)
/r ∈ A

for all i = 1, ... , s. Since {p1, ... , pk} exhausts the set
of primes p such that 1/p ∈ A we have that qi ∈
{p1, ... , pk} for all i = 1, ... , s. Thus (modulo a rear-
rangement) qi = pi for all i = 1, ... , s and somi ≤ ni for

all i = 1, ... , s. Therefore 1/r =
(

s∏
i=1
pni−mi
i

)
y ∈ 〈y〉,

which is a contradiction.
Theorem 5.8. Let A be a non-free subgroup of Q con-
taining Z: then the torsion-free rank of Ext1(A/Z,Z) is
greater or equal to 2ℵ0.
Proof. Consider the short exact sequence 0 → Z →
Q → Q/Z → 0: applying the functor Hom(A/Z,−),
one obtains

Ext1(A/Z,Z) ∼=
Hom(A/Z,Q/Z)
π∗Hom(A/Z,Q)

∼= Hom(A/Z,Q/Z),

because Hom(A/Z,Q) = 0. Moreover, since the quo-
tient A/Z is a torsion group, by Lemma 2.2 we have

Ext1(A/Z,Z) ∼= Hom(A/Z,Q/Z)
∼=

∏
p

Hom(Tp(A/Z),Z(p∞)).(5.1)

By Proposition 5.6, there are two cases to handle.

First Case: There is a prime number p such that 1/pk ∈
A for infinitely many k. In particular, 1/pk ∈ A for all
k ∈ N∗.

Hence there exists a subgroup of Tp(A/Z) isomor-
phic to the Prüfer p-group. Since the Prüfer p-group is
divisible (so injective), the contravariant functor
Hom(−,Z(p∞)) is exact and the restriction to the sub-
group Z(p∞) gives a surjection of abelian groups

Hom(Tp(A/Z),Z(p∞)) −→ End(Z(p∞)) −→ 0.

By Theorem 2.1, the group EndZ(Z(p∞)) is isomorphic
to Zp, which is a torsion-free group and of cardinality
equal to 2ℵ0 . Therefore by Lemma 5.1, we have that

|EndZ(Z(p∞))| ≤ max{r0(EndZ(Z(p∞))),ℵ0}

which implies that 2ℵ0 ≤ r0(EndZ(Z(p∞)) ) and gives
the inequality needed to infer the equality

r0(EndZ(Z(p∞)) ) = 2ℵ0 .

Thus, by virtue of Lemma 5.2,

r0(Hom(Tp(A/Z),Z(p∞)) ) ≥ 2ℵ0

and by equation (5.1) so is the torsion-free rank
r0(Ext1(A/Z,Z)).

Second Case: There are infinitely many primes
{pn}n∈N such that 1/pn ∈ A.

For any prime such that 1/pn belongs to A there is
a subgroup isomorphic to Z/pnZ in Tpn(A/Z) and so
we have an injective map⊕

n∈N
Z/pnZ ↪→

⊕
n∈N

Tpn(A/Z) ↪→ T (A/Z) = A/Z.

The functor Hom(−,Q/Z) is exact, since the group
Q/Z is injective, so when applied to the previous map
gives a surjection

Hom(A/Z,Q/Z) � Hom(
⊕
n∈N

Z/pnZ,Q/Z).

By Lemma 5.2, we have then

r0(Hom(A/Z,Q/Z)) ≥ r0(HomZ

(⊕
n∈N

Z/pnZ,Q/Z
)

).
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By Lemma 2.2 we have the isomorphism

HomZ

(⊕
n∈N

Z/pnZ,Q/Z
)
∼=
∏
n∈N

Hom(Z/pnZ,Z(p∞n )).

Since a generator of Z/pnZ must go into an element
whose order divides pn, the above group

Hom(Z/pnZ,Z(p∞n ))

is actually Hom(Z/pnZ,Z/pnZ), which is, in turn, iso-
morphic to Z/pnZ. Therefore we get that

r0(Hom(A/Z,Q/Z)) ≥ r0(
∏
n∈N

Z/pnZ).

Now let us give a partition of N into ℵ0 sets {In}n∈N,
each of them of cardinality ℵ0: then we can write∏

n∈N
Z/pnZ =

∏
n∈N

(∏
p∈In

Z/pZ
)
.

Note that each ∏
p∈In

Z/pZ has at least an element an
of infinite order. Therefore the subgroup ∏

p∈In
〈an〉 is a

torsion-free group whose cardinality is equal to 2ℵ0 . By
Lemma 5.1 its torsion-free rank is then equal to 2ℵ0 .
This yields that the torsion-free rank of ∏

n∈N
Z/pnZ is

also 2ℵ0 . Therefore also in this second case we get the
desired inequality

r0(Ext1(A/Z,Z)) = r0(Hom(A/Z,Q/Z)
≥ r0(

∏
n∈N

Z/pnZ) = 2ℵ0 .

Theorem 5.9. Let A be a countable torsion-free group
of torsion-free rank equal to 1. If A is free, then Ext1(A,Z)
is trivial. Otherwise r0(Ext1(A,Z)) = 2ℵ0.

Proof. By Lemma 5.5, it is enough to show that if A is
not free, then r0(Ext1(A,Z)) ≥ 2ℵ0 . Let us apply the
functor Hom(−,Z) to the exact sequence

0 −→ Z −→ A −→ A/Z −→ 0;

we obtain the exact sequence

Hom(Z,Z) δ−→ Ext1(A/Z,Z) −→ Ext1(A,Z) −→ 0 = Ext1(Z,Z)

In particular we can write

Ext1(A,Z) ∼=
Ext1(A/Z,Z)
δ(EndZ(Z)) .

The image δ(EndZ(Z)) is a subgroup of Ext1(A/Z,Z)
isomorphic to a quotient of EndZ(Z). Since EndZ(Z) is
isomorphic to Z, by Lemma 5.2 the torsion-free rank of
δ(EndZ(Z)) is at most 1.

Now, fix a maximal independent system {a} of A:
by Lemma 5.4, we can suppose that A is a subgroup
of Q and that a is equal to 1, implying that Z ⊆ A.
Therefore A falls into the assumption of Theorem 5.8
and so the torsion free rank r0(Ext1(A/Z,Z)) ≥ 2ℵ0 .
Thus by Lemma 5.3 we can conclude that the torsion-
free rank of Ext1(A,Z) is greater than 2ℵ0 .

5.3 Chase’s and Stein’s Theorems
We now merge the previous proof with the one con-
tained in the bookAlmost Free Modules [4, Thm. XII.4.1]
in order to present the result about the torsion-free rank
of Ext1(A,Z).
Theorem 5.10 (Chase’s Characterization). Let A be a
countable torsion-free group. If A is free, then Ext1(A,Z)
is trivial. Otherwise r0(Ext1(A,Z)) = 2ℵ0.

Proof. By Lemma 5.5, we know already that

r0(Ext1(A,Z)) ≤ 2ℵ0 .

Now we prove the converse inequality without the fur-
ther assumption of r0(A) equal to 1. We split the proof
in two cases according to whether r0(A) is finite or not.
Case 1: If A is not free and of finite rank n, proceed by
induction on n. For n equal to 1 we have already done.
So let A be with torsion-free rank equal to n > 1. By
Theorem 2.7 we can assume that A is indecomposable
(i.e. a non-trivial group that cannot be expressed as
direct sum of two subgroups). Let M = {a1, ... , an}
be a maximal independent system for A. Define the
subgroup

B = {a ∈ A \ {0} : a depends on {a1, ... , an−1}} ∪ {0},

which is a countable torsion-free group of rank n− 1.
Since

A = {a ∈ A \ {0} : a depends on {a1, ... , an}} ∪ {0},

A/B is a countable torsion-free group of rank 1. It
cannot be free, else it would be projective, yielding that
A ∼= B

⊕
A/B is free, contrary to our assumptions.

Hence A/B is not free and r0(Ext1(A/B,Z)) = 2ℵ0 .
Now apply Hom(−,Z) to the short exact sequence

0 −→ B −→ A −→ A/B → 0

and get the long exact one

0 −→ Hom(A/B,Z) Hom(A,Z) Hom(B,Z)

Ext1(A/B,Z) Ext1(A,Z) Ext1(B,Z) −→ 0.

δ

By exactness we have

0 −→ Ext1(A/B,Z)
δ(Hom(B,Z)) −→ Ext1(A,Z).
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Since the rank of B is finite, the group Hom(B,Z) is at
most countable and thus |δ(Hom(B,Z))| ≤ ℵ0.

Since ℵ0 < 2ℵ0 , by Lemma 5.3 the torsion-free rank

of the quotient Ext1(A/B,Z)
δ(Hom(B,Z)) remains 2ℵ0 . By Lemma

5.2, the torsion-free rank r0(Ext1(A,Z)) is 2ℵ0 .
Case 2: If A is not free and of infinite rank by Pon-
tryagin’s criterion there is a subgroup B ⊆ A of finite
rank which is not free. Now consider the short exact
sequence

0 −→ B −→ A −→ A/B −→ 0

and apply Hom(−,Z). The result is:

0 −→ Hom(A/B,Z) Hom(A,Z) Hom(B,Z)

Ext1(A/B,Z) Ext1(A,Z) Ext1(B,Z) −→ 0.

By Lemma 5.2 r0(Ext1(A,Z)) ≥ r0(Ext1(B,Z)) = 2ℵ0

and therefore r0(Ext1(A,Z)) = 2ℵ0 .
The solution for Whitehead’s problem for countable

groups is now an easy corollary:
Corollary 5.11 (Stein’s Theorem). Let A be a count-
able group. Then Ext1(A,Z) = 0 if and only if A is
free.

6 Concluding remarks

For completeness, we would like to conclude with a cou-
ple of further remarks about the analogue of Theorem
5.10 for p-ranks of Ext1(A,Z) and the structure of the
group itself, when A is countable and torsion-free.
Lemma 6.1. Let A be a torsion-free group: then
Ext1(A,Z) is injective.
Proof. As seen in the proof of Lemma 5.5, we have

Ext1(A,Z) = Hom(A,Q/Z))
π∗(Hom(A,Q)) .

In particular if Hom(A,Q/Z) is injective so will be
Ext1(A,Z).

Consider the multiplication A ·n−→ A by a non-zero
integer n: it is injective because A is torsion-free. By
injectivity of the group Q/Z, any map φ : A −→ Q/Z
can be written as the composite of a map ψ with ·n as
in the diagram

0 A A

Q/Z.

·n

φ
ψ

This is equivalent to say that Hom(A,Q/Z) is divisible.

As touched on before, Chase also computed the p-
ranks of Ext1(A,Z) for A countable and torsion-free.
The analogue of Chase’s Characterization of the torsion-
free rank (Theorem 5.10) is the following, whose proof
is out of the scope of this article but it can be found in
the book Almost Free Modules (more precisely [4, XII,
Thm. 4.7]).
Theorem 6.2 (Chase’s Characterization for p-ranks).
If A is a countable torsion-free group, then for any
prime p, the rank rp(Ext1(A,Z)) is either finite or 2ℵ0.

Therefore, if we apply Theorem 3.5 to the divisible
group Ext1(A,Z), it provides a complete characteriza-
tion of Ext1(A,Z) in terms of its ranks.
Corollary 6.3. If A is countable and torsion-free, then

Ext1(A,Z) ∼= Q⊕r0(Ext1
(A,Z)) ⊕

⊕
p

Z(p∞)⊕rp(Ext1
(A,Z))

where all the ranks are either finite or 2ℵ0.
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