6.4 Stand Density Measures

STOCKING

- 1. A loose term for the amount of anything on a given area, particularly in relation to what is considered to be optimum.
- 2. In a forest, a more or less subjective indication of the number of trees as compared to the desirable number for "best" results.
- 3. More precisely, a measure of the proportion of an area actually occupied by trees, expressed e.g., in terms of stocked quadrats or percent crown closure, as distinct from their stand density.
- 4. Adequacy of a given amount of material to meet some management objective. Accordingly, stands can be referred to as "understocked," "fully stocked," or "overstocked." A particular stand that is overstocked for one management objective could be "understocked" for another objective.

STAND DENSITY

- 1. A quantitative measure of tree stocking expressed either <u>relatively</u> as a coefficient, taking normal numbers, basal area or volume as unity, or <u>absolutely</u>, in terms of number of trees per acre, total basal area, or volume, per unit area.
- 2. More precisely, a measure of the degree of crowding of trees <u>within stocked</u> <u>areas</u>, -- of crown length to tree height; crown diameter to DBH, or crown diameter to tree height; or of stem spacing to tree height.

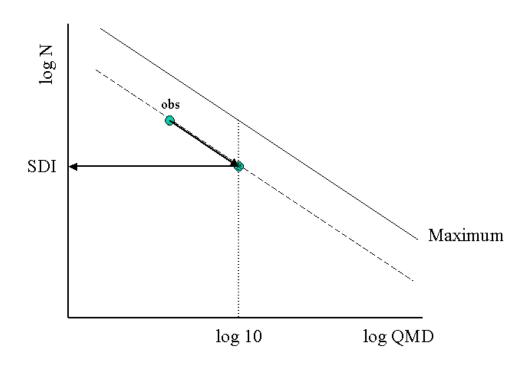
Simple indicators of stand density:

- <u>number</u> per unit area (equivalent to "density" in ecological usage)
- <u>basal area</u> per unit area
- <u>crown closure</u> usually expressed as % crown cover (can be obtained easily from aerial photos)

Density indices

- combine a simple density indicator with some measure of avg. tree size
- can be "relative" in nature if an actual stand is compared to a "standard" stand
 - Percent Normality, N% (McArdle, et al. 1930)
 - Stand Density Index, SDI (Reineke 1933)
 - Relative Density Index, RDI (Flewelling 1979)
 - Relative Density, RD (Curtis 1982)
- can be "relative" if a tree dimension is compared to a standard spatial unit
 - Relative Spacing, RS (Wilson 1946)
 - Crown Competition Factor, CCF (Krajicek, et al. 1961)

Percent Normality (N%)


- Based on *Normal* Yield, i.e., the yield that results when the trees are fully occupying the site
- Knowing the age and site index for a particular stand, its basal area can be expressed as a percentage of normal BA for same age and site:

$$N\% = \frac{BA_O}{BA_N} (100)$$

Stand Density Index (SDI)

- Combines number per acre with average tree size, QMD
- Based on a pre-determined limiting relationship between log(QMD)and log(N)
- Expresses density of a stand in terms of an equivalent number of 10-inch trees

$$\ln(N) = \ln(a) - 1.605 \cdot \ln(QMD)$$

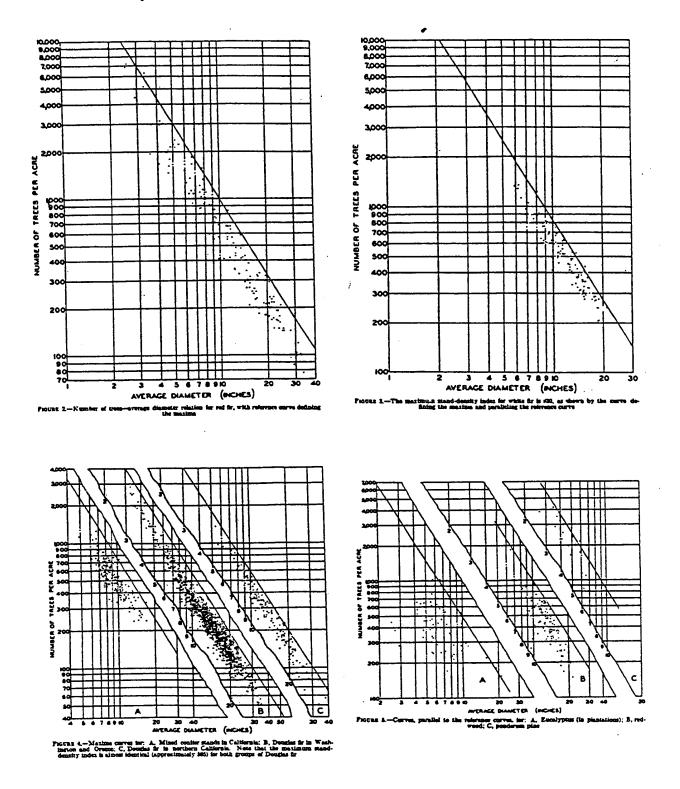
- Shortcut formula:
$$SDI = N \left(\frac{QMD}{10}\right)^{1.605}$$

- The exponent 1.605 may vary by species
- SDI increases with either an increase in number of stems per acre or an increase in QMD, or both
- The higher the SDI, the more crowded the stand

Percent Normality (continued)

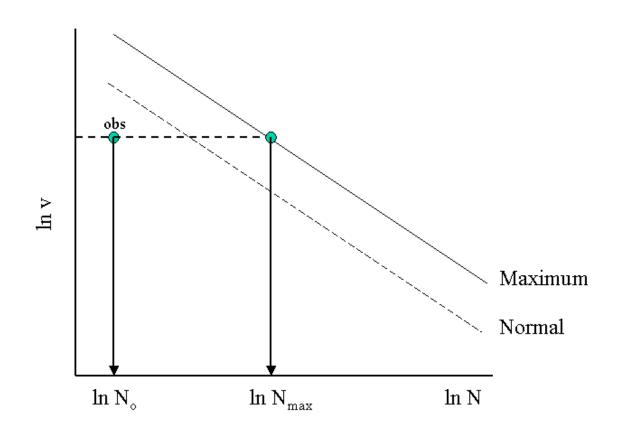
TABLE 2.—Yield tables for Douglas fir on fully stocked acre, total stand TOTAL NUMBER OF TREES

	Site C	lass V	8	Site Class IV			Site Class III		Site Class II			Site Class I		
Age (years)	Site index 80	Site index 90	Site index 100	Site index 110	Site index 120	Site index 130	Site index 140	Site index 150	Site index 160	Site index 170	Site index 180	Site index 190	Site index 200	Site index 210
20	Number 6, 920 2, 700 1, 530 1, 050 780 625 525 525 403 362 331 305 234 250	Number 5,500 2,200 1,275 890 670 537 455 398 319 292 271 252 228 225	Number 4, 150 1, 800 764 580 468 304 347 311 281 259 240 224 221 220	Number 3, 069 1, 472 927 659 500 405 345 345 345 345 344 271 247 224 209 195 184 175	Number 2, 324 1, 219 798 572 439 352 303 266 239 217 197 194 184 171 160 152	Number 1, 815 1, 030 680 496 380 206 235 209 188 173 161 141 133	Number 1, 460 865 585 430 337 274 205 184 166 162 141 131 123 117	Number 1, 210 735 510 377 296 242 207 180 161 146 146 144 134 124 108 102	Number 1,012 640 445 331 261 224 182 158 142 128 116 106 101 95 90	Number 880 555 385 200 228 188 159 138 123 111 101 94 88 82 78	Number 756 483 335 248 195 160 136 118 106 95 87 80 75 71 67	Number 654 408 282 208 164 135 115 100 89 81 74 69 64 64 60 57	Number 571 350 240 176 138 133 97 84 75 69 63 55 55 51 48	Number 490 300 203 150 116 95 81 71 64 58 63 49 45 42 40
DIAMETER OF AVERAGE TREE AT BREASTHEIGHT														
20	Inches 1.3 2.6 3.8 4.9 6.0 7.0 8.7 9.4 10.1 11.3 11.9 - 12.4 - 12.9	Inches 1.5 3.0 4.4 5.6 6.8 7.9 9.7 10.5 11.3 11.9 12.5 13.7 14.2	14.5	Inches 2.2 3.9 5.5 7.0 8.5 9.8 10.9 11.9 12.8 13.7 14.6 15.3 16.0 16.7 17.4	16.1 16.9 17.7	Inches 3.0 4.9 6.8 8.5 10.2 11.8 13.1 14.3 15.5 16.6 17.6 18.5 19.4 20.2 21.0	Inches 3.4 5.5 7.4 9.3 11.1 12.8 14.3 15.6 16.9 18.0 19.1 20.1 21.1 22.0 22.8	Inches 8.8 6.0 8.0 10.1 12.0 13.8 15.4 16.9 18.2 19.5 20.7 21.7 22.8 23.8 24.7	Inches 4. 2 6. 5 8. 7 10. 9 12. 9 14. 8 16. 6 18. 2 19. 7 21. 0 22. 3 23. 5 24. 5 25. 6 26. 6	Inches 4 5 7.0 9.4 11.8 14.0 16.0 17.9 19.6 21.2 22.6 24.0 25.3 28.5 27.7 28.9	Inches 4.9 7.6 10.2 12.8 15.2 17.5 19.6 21.4 23.1 24.6 26.1 27.5 28.8 30.0 81.2	Inches 5, 3 8, 3 11, 2 14, 0 16, 6 19, 1 21, 3 25, 1 26, 9 28, 5 30, 0 31, 4 32, 8 34, 1	Inches 5, 7 9, 0 12, 2 15, 3 18, 2 20, 9 23, 3 25, 6 27, 6 27, 6 27, 6 27, 6 31, 1 32, 7 34, 3 35, 8 37, 2	Inches 6, 2 9, 8 13, 3 16, 7 10, 9 22, 8 28, 0 30, 1 32, 2 34, 2 34, 2 34, 2 34, 2 34, 2 34, 4 1, 0
					TOTAL	L BASAL	AREA							
20		132 135 156 157 196 157 196 107 107 107 107 107 107 107 107	i 114 2 143 3 165 3 185 4 210 4 220 2 220 2 220 3 245 3 245 3 25 3 25 3 25 3 25 3 26 3	122 133 135 195 195 211 224 245 245 245 245 245 245 245 245 245	129 162 187 207 224 338 249 269 269 277 284 291 284 291	170 196 217 235 249 262 273 282 290 298 305 312	140 177 204 226 279 283 292 301 309 317 324	144 182 210 232 251 266 279 291 301 310 318 326 333	214 237 256 271 285 297 307 316 325 333	189 217 241 260 276 290 302 313 313 322 331 338 348	152 191 224 244 284 284 284 284 284 284 284 284	153 193 222 246 266 266 266 266 266 263 297 309 309 309 309 309 309 309 309 309 309	Sq. ft. 101 154 2248 268 285 285 299 312 3323 332 332 332 332 332 332 332 33	226 250 270 301 314 325 335 344 353 360
TOTAL YIELD IN CUBIC FEET														
20	2, 110 2, 840 3, 500 4, 580 4, 580 5, 000 5, 350 5, 900 6, 130 6, 340 6, 520	1,610 2,520 3,410 4,200 4,200 4,200 5,510 6,010 6,780 6,780 7,340 7,600 7,810	1,930 3,020 3,020 3,020 4,080 5,820 5,820 6,530 6,7,120 7,120 7,120 7,620 8,050 8,410 8,720 9,020 9,9,280 9,280	1 2,270 3,560 4,780 1 4,780 0 5,880 0 6,830 0 7,690 0 9,900 0 9,900 0 9,920 10,290 10,290 0 10,622 0 10,920	2,630 4,150 4,150 5,540 5,540 8,000 9,000 9,810 10,510 11,080 11,580 12,370 12,370 12,370 12,2710 12,710	2,980 4,690 6,300 9,100 10,240 11,160 12,610 13,180 13,650 14,080 14,490	5, 250 7, 050 8, 700 10, 150 11, 350 12, 390 13, 270 14, 000 15, 140 15, 610 16, 080	3, 610 5, 750 9, 490 11, 060 12, 400 14, 460 15, 990 15, 990 16, 560 17, 090	3,880 6,160 8,300 10,200 13,360 14,600 15,600 16,500 17,240 17,870 18,410 18,410	4, 110 6, 550 10, 860 12, 660 14, 220 15, 540 16, 610 17, 560 18, 340 19, 000 19, 590 20, 130	4, 33(6, 90(9, 32(11, 45(13, 30(14, 99(16, 40(17, 55(18, 51(19, 32(19, 32(12, 50(12, 64(12, 27(4,530 7,220 9,770 12,000 13,950 15,700 15,700 14,370 19,390 20,220 20,980 21,610 21,610 22,250	4, 750 7, 500 10, 150 12, 500 14, 500 16, 350 19, 140 20, 200 21, 840 22, 520 23, 170	4,990 7,830 10,560 12,960 15,080 18,500 19,820 20,940 21,870 22,660 23,360 24,030


TECHNICAL BULLETIN 201, U. S. DEPT. OF AGRICULTURE

THE YIELD OF DOUGLAS FIR

15


14

Stand Density Index (SDI) - continued

Relative Density Index (RDI)

- Combines number per acre with average tree size, volume (cu.ft)
- Based on the 3/2 power "law" given by: $v = aN^{-3/2}$ or $\ln(v) = \ln(a) - 3/2 \cdot \ln(N)$

- Relative Density Index,
$$\rho_r = \frac{N_{obs}}{N_{max}}$$

- $N_{max} = e^{\left[\frac{12.644 - \ln(v)}{1.5}\right]}$, for Douglas-fir in PNW

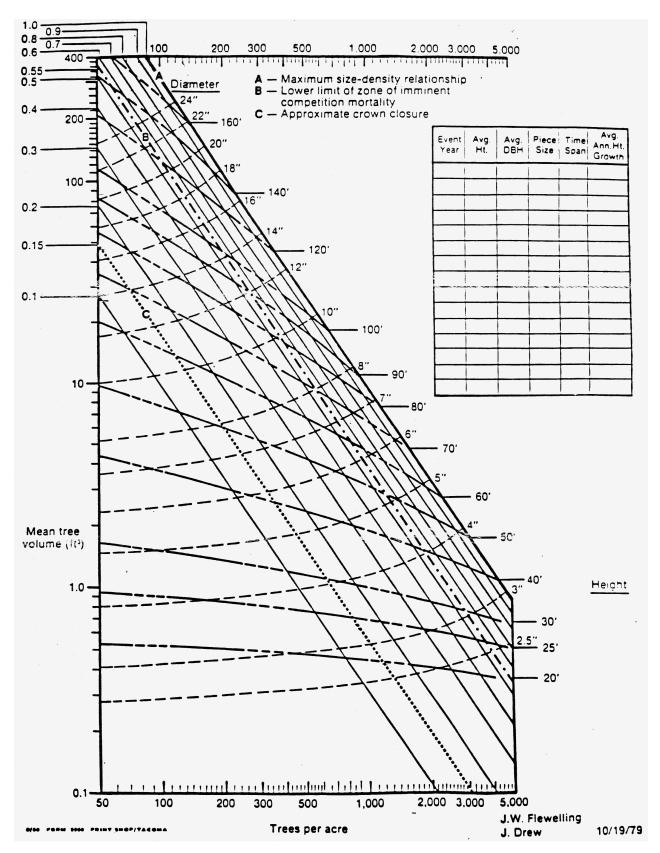


Figure. Density Manamgement Diagram (Flewelling 1979)

Relative Density (RD)

- Combines stand basal area and average tree size, ie., QMD

 $RD = \frac{BA}{\sqrt{QMD}}$, where BA is measured in sq.ft/acre, QMD in inches

RD will increase with an increase in BA (with constant QMD)

RD will increase with a decrease in QMD for constant BA

Thus, higher values of RD imply a greater degree of competition

Approximate Relationship Between Selected Stand Density Measures:

Standard	%Normality (BA)	RD (Curtis)	RDI
			(Flewelling)
Maximum	150	100	1.0
Normal	100	70	0.67
Upper thinning limit	75-80	50	0.5
Lower thinning limit	50 - 60	35	0.3
Crown closure	30	20	0.15

Relative Spacing (RS), or Spacing percent (S%)

Wilson proposed Relative Spacing as a method to assess and control the density of immature conifer stands in the Lake States.

Assuming the trees are either arranged in "regular" or "uniform" fashion or planted using square spacing, the average spacing, S, between trees is then given by

$$S = \sqrt{\frac{43,560}{N}}$$

Now, express this as a percentage of average dominant height (H40, say)

$$S\% = \frac{S}{H40} (100)$$

and we have a measure of "crowdedness" of the stand. The more crowded it is, the smaller this number.

Crown Competition Factor (CCF)

- Based on a relationship between open-grown tree crown width, CW (measured in feet) and DBH,

$$CW = a + b \cdot DBH$$
 (for open grown trees)

Then, assuming tree crowns are circular in cross-section

$$A = \pi \cdot r^{2}$$

$$= \pi \cdot \left(\frac{D}{2}\right)^{2}$$

$$= \frac{\pi}{4} \cdot CW^{2}$$

$$= \frac{\pi}{4} \cdot (a + b \cdot DBH)^{2}$$

$$CA = k \left(a^{2} + 2ab \cdot DBH + b^{2} \cdot DBH^{2}\right)$$

If there are N trees in the stand, the sum of all the crown areas in that stand (if they had been open grown) is then

$$\sum CA = k \left(N \cdot a^2 + 2ab \sum DBH + b^2 \sum DBH^2 \right).$$

We divide this by the area of one acre to put it on a scale such that the sum of CAs = 100 for the hypothetical situation where all crowns are just touching (and thus completely "covering" all ground), giving

$$CCF = \frac{\sum CA}{43,560} \bullet (100)$$

So, CCF = 100 indicates crown closure; greater numbers indicate competition.

Uses of Relative Density Measures:

- 1. They are useful <u>descriptors</u> of stand conditions (though not a complete description)
- 2. They are useful <u>predictors</u> of growth (in combination with other variables)
- 3. They serve as guides to thinning and stand treatment, by using easily measured stand variables (e.g., RD, or RDI) to define the following
 - a. Upper thinning limit, above which one expects substantial mortality and/or unacceptable diameter growth
 - b. Lower thinning limit, below which one expects unacceptable volume growth
 - c. Point of crown closure in young stands
- 4. They can also be used to estimate desirable planting numbers and desirable number of residual trees in pre-commercial thinning (e.g., RD).

$$RD = \frac{BA}{\sqrt{QMD}} = \frac{0.005454 \cdot N \cdot QMD^2}{\sqrt{QMD}} = 0.005454 \cdot N \cdot QMD^{3/2}$$

So, if we specify that RD should not exceed 50 at first commercial thinning (reasonable for Douglas-fir, to avoid suppression mortality and restriction of crown development), then:

$$50 = 0.005454 \cdot N \cdot QMD^{3/2}$$
$$\frac{50}{0.005454 \cdot QMD^{3/2}} = N = \frac{9167}{QMD^{3/2}}$$

For a desired QMD at first commercial thinning, the number to be planted or left after precommercial thinning is N, plus a small mortality allowance E.g., if we desire a 10" QMD at 1st commercial thinning:

$$N = \frac{9167}{10^{3/2}} = 290$$

If we expect, say 3% mortality initially, we might then plant 300 trees per acre.

LITERATURE CITED

- Curtis, R.O. 1982. A simple index of stand density for Douglas-fir. *For. Sci.* 28: 92–94.
- Flewelling, J.W. 1979. Stand density management: An alternative approach and its application to Douglas-fir plantations. *For. Sci.* 25: 518 532.
- Krajicek, J.E., K.A. Brinkman, and F.S. Gingrich. 1961. Crown competition: a measure of density. *For. Sci.* 7:36 42.
- McArdle, R.E., W.H. Meyer and D. Bruce. 1930 (Revised 1949). The yield of Douglas fir in the Pacific Northwest. U.S. Dept. Agric. Tech. Bull. No. 201.
- Reineke, L.H. 1933. Perfecting a stand density index for even-aged forests. *Jour. Agric. Res.* 46: 627 638.
- Wilson, F.G. 1946. Numerical expression of stocking in terms of height. J. For. 44:758 761.

OTHER REFERENCES

- Curtis, R.O. 1970. Stand density measures: An interpretation. For. Sci. 16: 403 414.
- Curtis, R.O. 1972. Yield tables past and present. J. For. 70: 28 32.
- Daniels, R.F. 1976. Simple competition indices and their correlation with annual loblolly pine tree growth. *For. Sci.* 22:454-456.