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Problem 1

Consider the following feedback system, where K is a constant gain and

G(s) =
1

s3 + 2s2 + 2s+ 1
:

G YK
+
�R

The transfer function of the system can be written as:

Y

R
=

KG

1 +KG

=
K

s3+2s2+2s+1

1 + K
s3+2s2+2s+1

=
K

s3 + 2s2 + 2s+ 1 +K

In order to satisfy the necessary condition, all coefficients should be positive.

∴ K + 1 > 0 ⇒ K > −1

Use the Routh-Hurwitz criterion to check for other conditions:

s3 : 1 2
s2 : 2 K + 1
s1 : b1 0
s0 : c1
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(
1

2
(K − 3)(K + 1))

= K + 1

From the test, we can see that there are two conditions:

−1

2
(K − 3) > 0⇒ K < 3

and
K + 1 > 0⇒ K > −1

∴ −1 < K < 3 for a stable closed loop system.

Problem 2

Consider the same feedback configuration as in Problem 1, but now with K(s) and G(s)
unknown transfer functions. Suppose that we know that the transfer function from R to Y is

Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

for some parameters ζ > 0 and ωn > 0.

(i) Based on this information, find the forward gain K(s)G(s).

Y

R
=

K(s)G(s)

1 +K(s)G(s)

=
ω2
n

s2 + 2ζωn + ω2
n

=
ω2
n

s(s+ 2ζωn) + ω2
n

=

ω2
n

s(s+2ζωn)

1 + ω2
n

s(s+2ζωn)

∴ K(s)G(s) =
ω2
n

s(s+ 2ζωn)
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(ii) Determine the system type and discuss what it implies about the closed-loop system’s
steady-state tracking capability.

The system has one pole at the origin. Therefore, the system is Type I system.

kp = lim
s→0

K(s)G(s) = lim
s→0

ω2
n

s(s+ 2ζωn)
=∞ ⇒ 1

1 + kp
= 0

The system follows constant references (step) without error.

kv = lim
s→0

sK(s)G(s) = lim
s→0

s
ω2
n

s(s+ 2ζωn)
=
ωn
2ζ

⇒ 1

kv
=

2ζ

ωn

The system follows ramp references with constant error
2ζ

ωn
.

ka = lim
s→0

s2K(s)G(s) = lim
s→0

s2
ω2
n

s(s+ 2ζωn)
= 0 ⇒ 1

ka
=∞

The system cannot follow parabola references.

Problem 3

The speed y of a DC motor satisfies ẏ+60y = 600v−1500d, where v is the armature voltage
— the input to the system — and d is a load.

Suppose v is defined via the PI control law,

v = KP e+KI

∫ t

0
e(s) ds.

where e = r − y, as usual, with r the reference speed.

(i) Define a disturbance process d̃ so that the model can be expressed in the ‘input distur-
bance’ form,

Y = Gp(V + D̃)

where Gp is the plant transfer function.

Model: ẏ + 60y = 600v − 1500d ⇒ sY (s) + 60Y (s) = 600V (s)− 1500D(s)

Y (s) =
600

s+ 60
V (s)− 1500

s+ 60
D(s)

=
600

s+ 60

[
V (s) +

(−1500

600

)
D(s)

]
With Gp(s) =

600

s+ 60
and D̃(s) =

−1500

600
D(s) = −5

2
D(s), we obtain

Y (s) = Gp(s)[V (s) + D̃(s)]
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(ii) For this part, we consider PI compensation

v(t) = KP e(t) +KI

∫ t

0
e(s)ds

V (s) = KPE(s) +
KI

s
E(s)

=

(
KP +

KI

s

)
E(s) = Gc(s)E(s)

Block diagram:

(iii) Ignore D̃

H1(s) =
Y (s)

R(s)
=

Gc(s)Gp(s)

1 +Gc(s)Gp(s)
=

600
s+60

KP s+KI
s

1 + 600
s+60

KP s+KI
s

=
600(KP s+KI)

s(s+ 60) + 600(KP s+KI)

Note: H1(0) =
600KI

600KI
= 1, as expected.

(iv) Ignore R

From Part (i), we found that D̃(s) = −5

2
D(s)

H2(s) =
Y (s)

D(s)
= −5

2
· Y (s)

D̃(s)
= −5

2

(
Gp(s)

1 +Gc(s)Gp(s)

)
= −5

2

(
600
s+60

1 + 600
s+60

KP s+KI
s

)

= −5

2

(
600s

s(s+ 60) + 600(KP s+KI)

)
= − 1500s

s(s+ 60) + 600(KP s+KI)
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Note: H2(0) = 0, as expected.

(v) Compute values of KP ,KI so that the following closed loop specifications hold for a step
reference input: no more than 5% overshoot, t5%s = 1 sec. and no undershoot (no zeros in
RHP).

Take d ≡ 0.

Assume that poles are complex

We know that t5%s ≈
3

σ
. Our desired t5%s is 1 sec.

∴
3

σ
= 1⇒ σ =

3

1
= 3

Recall the characteristic equation: s2 + 2ζωns+ ω2
n = s2 + 2σs+ ω2

n

From part (iii),

Y (s)

R(s)
= 600

(KP s+KI)

s(s+ 60) + (KP s+KI)

= 600
KP s+KI

s2 + (60 + 600KP )s+ 600KI

Therefore, this requires 2σ = (60 + 600KP )

2σ = 60 + 600KP ⇒ σ = 30 + 300KP ⇒ 3 = 30 + 300KP ∴ KP = −30− 3

300
= − 9

100

Now, consider the overshoot spec, Mp ≤ 0.05

Mp = e
−π·ζ√
1−ζ2 ≤ 0.05

∴ 0.69 ≤ ζ < 1

Let ζ = 0.69
We found earlier that

σ = ζωn = 3

∴ ωn =
3

ζ
= ωn =

3

0.69
= 4.35

Back to our characteristic equation, this requires that ω2
n = 600KI

ω2
n = 4.352 = 600KI ⇒ KI =

18.92

600
= 0.032
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HOWEVER , consider the location of the zero, which is determined by KP s+KI = 0

If KP = − 9

100
and KI = 0.032, then the zero is at s =

−KI

KP
=

0.032 ∗ 100

9
> 0 which is

in the RHP ⇒ Undershoot ⇒ Spec not satisfied.

Repeating the steps with ζ = 1 (No overshoot) still didn’t eliminate the undershoot.
Therefore, the assumption that poles are complex is incorrect.

Now, assume that poles are real.

The desired characteristic polynomial is

(s+ σ)(s+ p) = (s+ 3)(s+ p)

= s2 + (p+ 3)s+ 3p

= s2 + (60 + 600KP )s+ 600KI

Require KP ,KI > 0 to avoid undershoot.

Try KP = 1
10 , which gives p+ 3 = 60 + 600KP = 120 or p = 120− 3 = 117.

The pole location is −p which is much less than -4. Then,

3p = 300KI ⇒ KI =
3(117)

600
= 0.585

We now have a zero at −kI
kp
∼= −0.585

0.1
= −5.85, which in in the OLHP⇒ No longer have

undershoot

Poles placed at {-3,-117}. Results in a zero in the LHP at -5.85. ⇒ Perfect step response!

Problem 4

Set up the listed characteristic equations in the form suited to Evans’ root-locus method,
as described in Section 5.1. In each case, express a(s), b(s), and K in terms of the original
parameters. Remember that the polynomials a(s) and b(s) must be monic, and the degree of
b(s) no greater than the degree of a(s).

(i) To obtain n ≥ m (proper transfer function), we write

s+
1

τ2
= 0⇒ 1 +K

1

s
= 0, K =

1

τ2

(ii) As in (a), write

1 +K
s

(s+R)3
= 0, K =

1

T
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(iii) Now, this is impossible without changing the problem. Write s′ = s+R, so that

(s+R)3 +
s

T
= (s′)3 +

1

T
(s′ −R)

= (s′)3 +
1

T
s′ −K, K =

R

T

This results in a negative root locus.

1−K 1

(s′)3 + 1
T s

′ = 0
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