UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering
 ECE 486: Control Systems
 Homework 4 Solutions

Fall 2018

Problem 1

Consider the following feedback system, where K is a constant gain and

$$
G(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1}:
$$

The transfer function of the system can be written as:

$$
\begin{aligned}
\frac{Y}{R} & =\frac{K G}{1+K G} \\
& =\frac{\frac{K}{s^{3}+2 s^{2}+2 s+1}}{1+\frac{K}{s^{3}+2 s^{2}+2 s+1}} \\
& =\frac{K}{s^{3}+2 s^{2}+2 s+1+K}
\end{aligned}
$$

In order to satisfy the necessary condition, all coefficients should be positive.

$$
\therefore K+1>0 \quad \Rightarrow \quad K>-1
$$

Use the Routh-Hurwitz criterion to check for other conditions:

$$
\begin{array}{ccc}
s^{3} & : 1 & 2 \\
s^{2} & : 2 & K+1 \\
s^{1} & : b_{1} & 0 \\
s^{0} & : c_{1} &
\end{array}
$$

$$
\begin{aligned}
b_{1} & =-\frac{1}{2}\left|\begin{array}{cc}
1 & 2 \\
2 & K+1
\end{array}\right|=-\frac{1}{2}(K+1-4) \\
& =-\frac{1}{2}(K-3) \\
c_{1} & \left.=-\frac{1}{-\frac{1}{2}(K-3)} \right\rvert\,-\frac{1}{2}(K-3) \\
& =\frac{1}{\frac{1}{2}(K-3)}\left(\frac{1}{2}(K-3)(K+1)\right) \\
& =K+1
\end{aligned}
$$

From the test, we can see that there are two conditions:

$$
-\frac{1}{2}(K-3)>0 \Rightarrow K<3
$$

and

$$
K+1>0 \Rightarrow K>-1
$$

$\therefore-1<K<3$ for a stable closed loop system.

Problem 2

Consider the same feedback configuration as in Problem 1, but now with $K(s)$ and $G(s)$ unknown transfer functions. Suppose that we know that the transfer function from R to Y is

$$
\frac{Y(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

for some parameters $\zeta>0$ and $\omega_{n}>0$.
(i) Based on this information, find the forward gain $K(s) G(s)$.

$$
\begin{aligned}
\frac{Y}{R} & =\frac{K(s) G(s)}{1+K(s) G(s)} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)+\omega_{n}^{2}} \\
& =\frac{\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}}{1+\frac{\omega_{n}^{n}}{s\left(s+2 \zeta \omega_{n}\right)}} \\
\therefore K(s) G(s) & =\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}
\end{aligned}
$$

(ii) Determine the system type and discuss what it implies about the closed-loop system's steady-state tracking capability.
The system has one pole at the origin. Therefore, the system is Type I system.

$$
k_{p}=\lim _{s \rightarrow 0} K(s) G(s)=\lim _{s \rightarrow 0} \frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}=\infty \quad \Rightarrow \frac{1}{1+k_{p}}=0
$$

The system follows constant references (step) without error.

$$
k_{v}=\lim _{s \rightarrow 0} s K(s) G(s)=\lim _{s \rightarrow 0} s \frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}=\frac{\omega_{n}}{2 \zeta} \quad \Rightarrow \frac{1}{k_{v}}=\frac{2 \zeta}{\omega_{n}}
$$

The system follows ramp references with constant error $\frac{2 \zeta}{\omega_{n}}$.

$$
k_{a}=\lim _{s \rightarrow 0} s^{2} K(s) G(s)=\lim _{s \rightarrow 0} s^{2} \frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}=0 \quad \Rightarrow \frac{1}{k_{a}}=\infty
$$

The system cannot follow parabola references.

Problem 3

The speed y of a DC motor satisfies $\dot{y}+60 y=600 v-1500 d$, where v is the armature voltage - the input to the system - and d is a load.

Suppose v is defined via the PI control law,

$$
v=K_{P} e+K_{I} \int_{0}^{t} e(s) \mathrm{d} s
$$

where $e=r-y$, as usual, with r the reference speed.
(i) Define a disturbance process \tilde{d} so that the model can be expressed in the 'input disturbance' form,

$$
Y=G_{p}(V+\tilde{D})
$$

where G_{p} is the plant transfer function.
Model: $\dot{y}+60 y=600 v-1500 d \Rightarrow s Y(s)+60 Y(s)=600 V(s)-1500 D(s)$

$$
\begin{aligned}
Y(s) & =\frac{600}{s+60} V(s)-\frac{1500}{s+60} D(s) \\
& =\frac{600}{s+60}\left[V(s)+\left(\frac{-1500}{600}\right) D(s)\right]
\end{aligned}
$$

With $G_{p}(s)=\frac{600}{s+60}$ and $\tilde{D}(s)=\frac{-1500}{600} D(s)=-\frac{5}{2} D(s)$, we obtain

$$
Y(s)=G_{p}(s)[V(s)+\tilde{D}(s)]
$$

(ii) For this part, we consider PI compensation

$$
\begin{aligned}
v(t) & =K_{P} e(t)+K_{I} \int_{0}^{t} e(s) d s \\
V(s) & =K_{P} E(s)+\frac{K_{I}}{s} E(s) \\
& =\left(K_{P}+\frac{K_{I}}{s}\right) E(s)=G_{c}(s) E(s)
\end{aligned}
$$

Block diagram:

(iii) Ignore \tilde{D}

$$
\begin{aligned}
H_{1}(s)=\frac{Y(s)}{R(s)} & =\frac{G_{c}(s) G_{p}(s)}{1+G_{c}(s) G_{p}(s)}=\frac{\frac{600}{s+60} \frac{K_{P} s+K_{I}}{s}}{1+\frac{600}{s+60} \frac{K_{P} s+K_{I}}{s}} \\
& =\frac{600\left(K_{P} s+K_{I}\right)}{s(s+60)+600\left(K_{P} s+K_{I}\right)}
\end{aligned}
$$

Note: $H_{1}(0)=\frac{600 K_{I}}{600 K_{I}}=1$, as expected.
(iv) Ignore R

From Part (i), we found that $\tilde{D}(s)=-\frac{5}{2} D(s)$

$$
\begin{aligned}
H_{2}(s)=\frac{Y(s)}{D(s)}=-\frac{5}{2} \cdot \frac{Y(s)}{\tilde{D}(s)} & =-\frac{5}{2}\left(\frac{G_{p}(s)}{1+G_{c}(s) G_{p}(s)}\right) \\
& =-\frac{5}{2}\left(\frac{\frac{60}{s+60}}{1+\frac{600}{s+60} \frac{K_{P} s+K_{I}}{s}}\right) \\
& =-\frac{5}{2}\left(\frac{600 s}{s(s+60)+600\left(K_{P} s+K_{I}\right)}\right) \\
& =-\frac{1500 s}{s(s+60)+600\left(K_{P} s+K_{I}\right)}
\end{aligned}
$$

Note: $H_{2}(0)=0$, as expected.
(v) Compute values of K_{P}, K_{I} so that the following closed loop specifications hold for a step reference input: no more than 5% overshoot, $t_{s}^{5 \%}=1 \mathrm{sec}$. and no undershoot (no zeros in RHP).

Take $d \equiv 0$.

Assume that poles are complex
We know that $t_{s}^{5 \%} \approx \frac{3}{\sigma}$. Our desired $t_{s}^{5 \%}$ is 1 sec .

$$
\therefore \frac{3}{\sigma}=1 \Rightarrow \sigma=\frac{3}{1}=3
$$

Recall the characteristic equation: $s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=s^{2}+2 \sigma s+\omega_{n}^{2}$
From part (iii),

$$
\begin{aligned}
\frac{Y(s)}{R(s)} & =600 \frac{\left(K_{P} s+K_{I}\right)}{s(s+60)+\left(K_{P} s+K_{I}\right)} \\
& =600 \frac{K_{P} s+K_{I}}{s^{2}+\left(60+600 K_{P}\right) s+600 K_{I}}
\end{aligned}
$$

Therefore, this requires $2 \sigma=\left(60+600 K_{P}\right)$

$$
2 \sigma=60+600 K_{P} \Rightarrow \sigma=30+300 K_{P} \Rightarrow 3=30+300 K_{P} \therefore K_{P}=-\frac{30-3}{300}=-\frac{9}{100}
$$

Now, consider the overshoot spec, $M_{p} \leq 0.05$

$$
\begin{array}{r}
M_{p}=e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^{2}}} \leq 0.05} \\
\therefore 0.69 \leq \zeta<1
\end{array}
$$

Let $\zeta=0.69$
We found earlier that

$$
\begin{gathered}
\sigma=\zeta \omega_{n}=3 \\
\therefore \omega_{n}=\frac{3}{\zeta}=\omega_{n}=\frac{3}{0.69}=4.35
\end{gathered}
$$

Back to our characteristic equation, this requires that $\omega_{n}^{2}=600 K_{I}$

$$
\omega_{n}^{2}=4.35^{2}=600 K_{I} \Rightarrow K_{I}=\frac{18.92}{600}=0.032
$$

HOWEVER, consider the location of the zero, which is determined by $K_{P} s+K_{I}=0$ If $K_{P}=-\frac{9}{100}$ and $K_{I}=0.032$, then the zero is at $s=\frac{-K_{I}}{K_{P}}=\frac{0.032 * 100}{9}>0$ which is in the RHP \Rightarrow Undershoot \Rightarrow Spec not satisfied.

Repeating the steps with $\zeta=1$ (No overshoot) still didn't eliminate the undershoot. Therefore, the assumption that poles are complex is incorrect.

Now, assume that poles are real.
The desired characteristic polynomial is

$$
\begin{aligned}
(s+\sigma)(s+p) & =(s+3)(s+p) \\
& =s^{2}+(p+3) s+3 p \\
& =s^{2}+\left(60+600 K_{P}\right) s+600 K_{I}
\end{aligned}
$$

Require $K_{P}, K_{I}>0$ to avoid undershoot.
Try $K_{P}=\frac{1}{10}$, which gives $p+3=60+600 K_{P}=120$ or $p=120-3=117$.
The pole location is $-p$ which is much less than -4 . Then,

$$
3 p=300 K_{I} \Rightarrow K_{I}=\frac{3(117)}{600}=0.585
$$

We now have a zero at $-\frac{k_{I}}{k_{p}} \cong-\frac{0.585}{0.1}=-5.85$, which in in the OLHP \Rightarrow No longer have undershoot

Poles placed at $\{-3,-117\}$. Results in a zero in the LHP at $-5.85 . \Rightarrow$ Perfect step response!

Problem 4

Set up the listed characteristic equations in the form suited to Evans' root-locus method, as described in Section 5.1. In each case, express $a(s), b(s)$, and K in terms of the original parameters. Remember that the polynomials $a(s)$ and $b(s)$ must be monic, and the degree of $b(s)$ no greater than the degree of $a(s)$.
(i) To obtain $n \geq m$ (proper transfer function), we write

$$
s+\frac{1}{\tau^{2}}=0 \Rightarrow 1+K \frac{1}{s}=0, \quad K=\frac{1}{\tau^{2}}
$$

(ii) As in (a), write

$$
1+K \frac{s}{(s+R)^{3}}=0, \quad K=\frac{1}{T}
$$

(iii) Now, this is impossible without changing the problem. Write $s^{\prime}=s+R$, so that

$$
\begin{aligned}
(s+R)^{3}+\frac{s}{T} & =\left(s^{\prime}\right)^{3}+\frac{1}{T}\left(s^{\prime}-R\right) \\
& =\left(s^{\prime}\right)^{3}+\frac{1}{T} s^{\prime}-K, \quad K=\frac{R}{T}
\end{aligned}
$$

This results in a negative root locus.

$$
1-K \frac{1}{\left(s^{\prime}\right)^{3}+\frac{1}{T} s^{\prime}}=0
$$

