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Lecture 14: Root Locus Continued



Overview

In this Lecture, you will learn:

Review: What happens at high gain?

• Angles of Departure

The Case of 90◦ Departure

• Calculating the center of asymptotes

Breaking off the Real Axis

• Break Points

What is the effect of small gain?

• Departure Angles
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Root Locus
Review of Asymptotes

Pole locations change at high gain.

• Some poles stay small

• Some poles get large
I Asymptotes depend on relative number of poles and zeros.

Small poles go to zeros.

Big poles leave on asymptotes:
Cases:

• n−m = 0 - No Asymptotes

• n−m = 1 - Asymptote at 180◦

• n−m = 2 - Asymptotes at ±90◦

• n−m = 3 - Asymptotes at 180◦, ±60◦

• n−m = 4 - Asymptotes at ±45◦ and ±135◦

Im(s)

Re(s)
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Root Locus
90◦ Asymptotes

Recall the suspension
system:

G(s) = s2+s+1
s4+2s3+3s2+1s+1 .

Count: 2 zeros, 4 poles.

n−m = 2
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∠∞ = −90◦,−270◦

2 vertical asymptotes at 90◦ and 270◦.

Poles MAY destabilize at large gain. But will they???

• Why these poles?
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The Asymptotic Center

Recall

• m = # of zeroes

• n = # of poles

Problem 1: When n−m = 2.

• Is high gain destabilizing?

Problem 2: When n−m ≥ 2.

• Which poles get big?
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Definition 1.

The Center of Asymptotes is where all asymptotes meet.

The center of asymptotes is only for the big poles on the root locus.

• The center of asymptotes is the average of these points as k →∞.

center =

∑
qiBIG

#iBIG
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Calculating the Asymptotic Center

center =

∑
qiBIG

#iBIG

Denote

• qi are the CLOSED-LOOP poles
I qi are roots of d(s) + kn(s)

• zi are the zeros (open and closed loop)
I zi are roots of n(s)

• pi are the OPEN-LOOP poles
I pi are roots of d(s)
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Calculating #iBIG
is easy!

• Small poles go to zeroes

• Big poles form asymptotes

#iBIG
= n−m = #OL poles−#OL zeroes

Real Problem: How to calculate ∑
qiBIG

?
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Calculating the Asymptotic Center

Recall from Routh-Hurwitz: Let pi be the roots of d(s).

d(s) = sn + a1s
n−1 + · · ·+ an = (s− p1)(s− p2) · · · (s− pn)

Observe what happens as we expand out the roots:

d(s) = (s− p1)(s− p2)(s− p3)(s− p4) · · · (s− pn)

= (s2 − (p1 + p2)s+ p1p2)(s− p3)(s− p4) · · · (s− pn)

= (s3 − (p1 + p2 + p3)s2 + (p1p2 + p2p3 + p1p3)s− p1p2p3)(s− p4) · · · (s− pn)

= · · ·
= sn − (p1 + p2 + · · ·+ pn)sn−1 + · · ·+ (−1)np1p2 · · · pn

The second coefficient is the negative sum of the roots

a1 = −(p1 + p2 + · · ·+ pn) = −
∑

pi
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Calculating the Asymptotic Center

Since kG
1+kG = kn

d+kn ,
∑
qi is the second coefficient of

d(s) + kn(s)

Only interested in the case when n−m ≥ 2

• 90◦ asymptotes or more.

d(s) = sn + a1s
n−1 + · · ·

n(s) = sm + · · ·

When n−m = 2,

d(s) + kn(s) = sn + a1s
n−1 + (a2 + k)sn−2 + · · ·

Conclusion: Changing k doesn’t change the second coefficient.

• Sum of poles doesn’t change under feedback.∑
pi =

∑
qi = −a1

This sum is the second coefficient of d(s).
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Calculating the Asymptotic Center

Recall we want to find

center =

∑
qiBIG

#iBIG

It is obvious that∑
qi =

∑
qiBIG

+
∑

qiSMALL
= −a1

So that∑
qiBIG

= −a1 −
∑

qiSMALL
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So how do we find
∑
qiSMALL

?

• As k →∞ small poles go to zeroes.

At high gain ∑
qiSMALL

∼=
∑

zi
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Calculating the Asymptotic Center

G(s) =
n(s)

d(s)

The zeros, zi are the roots of n(s).

n(s) = sm + b1s
m−1 + · · · = (s− z1) · · · (s− zm)

As before ∑
zi = −b1

Finally

center =

∑
qiBIG

#iBIG

=

∑
qi −

∑
qiSMALL

n−m

=

∑
pi −

∑
zi

n−m

=
b1 − a1
n−m

Where

• a1 is the first coefficient of d(s)

• b1 is the first coefficient of n(s)
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Calculating the Asymptotic Center
Example: Suspension System

G(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + 1s+ 1

#iBIG
= n−m
= #poles−#zeroes

= 2.

Read off the coefficients

• a1 = 2

• b1 = 1
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center =
b1 − a1
n−m

=
1− 2

2
= −1

2

Conclusion: High gain is stable.
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Calculating the Asymptotic Center
Example: Tweaked Suspension System

Look what happens if we change 2nd coefficient in n(s) from 1 to 3.

G(s) =
s2 + 3s+ 1

s4 + 2s3 + 3s2 + 1s+ 1

#iBIG
= n−m = #poles−#zeroes = 2

Read off the coefficients

• a1 = 2

• b1 = 3

Thus

center =
b1 − a1
n−m

=
3− 2

2
=

1

2
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Now high gain is unstable.
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Calculating the Asymptotic Center
Example: Suspension System with Integral Feedback

G(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + 1s+ 1

1

s

=
s2 + s+ 1

s5 + 2s4 + 3s3 + 1s2 + s

#iBIG
= n−m =

#poles−#zeroes = 3.

Again, we have the same coefficients

• a1 = 2

• b1 = 1

Thus

center =
b1 − a1
n−m

=
1− 2

3
= −1

3
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Calculating the Asymptotic Center
Another Example

G(s) =
s2 + s+ 1

s6 + 2s5 + 5s4 − s3 + 2s2 + 1

First, #iBIG
= n−m = 4.

Again, we have the same
coefficients

• a1 = 2

• b1 = 1

Thus

center =
b1 − a1
n−m

=
1− 2

4
= −1

4
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Calculating the Asymptotic Center
Alternative Example

G(s) =
1

s(s+ 4)(s+ 6)

First, #iBIG
= n−m = 3

This time, we can directly use
poles and zeros

• No Zeroes

• p1 = 0, p2 = −4, p3 = −6.∑
pi = −4− 6 = −10
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center =

∑
pi −

∑
zi

n−m
=
−10− 0

3
= −3.333̄
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Calculating the Asymptotic Center
DIY Example

G(s) =
s+ 2

(s+ 1)(s2 + 2s+ 2)

Im(s)

Re(s)
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Break points

Recall the inverted pendulum with derivative feedback.

G(s) =
1 + s

s2 − 1
2

When do the poles become imaginary?

• Important for choosing optimal k.
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Break points
Other Examples

G(s) =
(s+ 3)(s+ 4)

(s+ 1)(s+ 2)
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Break points

Recall for a point on the root locus

d(s) + kn(s) = 0

or for a point on the real axis: s = a

k(a) = − d(a)

n(a)
= − 1

G(a)

Idea: Use maximum principle to find the maximum and minimum of k on the
real axis.

Definition 2.

The extrema of a continuous function of a real variable, f(a), occur at the
boundary or when

d

da
f(a) = 0
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Break points

To find the point when the root locus leaves the real axis, we calculate the
extrema of

k(a) = − 1

G(a)

We need to solve
d

da
k(a) = 0

or

d

da
k(a) = − d

da

1

G(a)
=

d(a)

n(a)2
n′(a)− d′(a)

n(a)
=
d(a)n′(a)− d′(a)n(a)

n(a)2
= 0

Break Points occur at real-valued solutions of

d(a)n′(a)− d′(a)n(a) = 0
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Break points
Numerical Example

G(s) =
1

s(s+ 4)(s+ 6)
=

1

s3 + 10s2 + 24s

Break points occur when

d(a)n′(a)− d′(a)n(a)

= 0− (3a2 + 20a+ 24) = 0

which has roots

a1,2 =
−20±

√
202 − 4 ∗ 24 ∗ 3

6
∼= −5.1, −1.57
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Break points
Numerical Example

G(s) =
(s+ 3)(s+ 4)

(s+ 1)(s+ 2)
=
s2 + 7s+ 12

s2 + 3s+ 2

Break points occur when

d(a)n′(a)− d′(a)n(a) = (a2 + 3a+ 2)(2a+ 7)− (2a+ 3)(a2 + 7a+ 12)

= (a2 + 3a+ 2)(2a+ 7)− (2a+ 3)(a2 + 7a+ 12)

= −2(2a2 + 10a+ 11) = 0

Which has roots

a1,2 = −1.634, −3.366

Break points at −1.634 and −3.366.
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Break points
Numerical Example

G(s) =
1 + s

s2 − 1
2

Break points occur when

d(a)n′(a)− d′(a)n(a)

= (a2 − .5) · 1− 2a · (1 + a)

= −(a2 + 2a+ .5) = 0

Which has roots

a1,2 = −.293, −1.707
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Break points at −.293 and −1.707
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Break points
Summary

Step 1: Root Locus starts at Open Loop Poles.
Step 2: At Large Gain, k →∞

• Small Poles go to zeroes

• Large Poles approach asymptotes

• Center at

σ =

∑
pi −

∑
zi

n−m
=
b1 − a1
n−m

Step 3: On real axis

• When odd number of poles/zeroes to the right.

• Break points when

− d

da

1

G(a)
= 0 or d(a)n′(a)− d′(a)n(a) = 0
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Departure Angle

The root locus starts at the poles.

• What it the effect of small gain?

• Do the poles become more or less stable?

Im(s)

Re(s)

< dep

< dep
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Departure Angle

To find the departure angle, we look at a very small region around the departure
point.

< dep

Im(s)

Re(s)

For a point to be on the root locus, we want phase of 180◦.

∠G(s) =

m∑
i=1

∠(s− zi)−
n∑

i=1

∠(s− pi) = 180◦
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Departure Angle

If we make the point s extremely close to the pole p.

• The angle to other poles and zeros from s is the
same as from p.

I ∠(s− zi) ∼= ∠(p− zi) for all i
I ∠(s− pi) ∼= ∠(p− pi) for all i

• The only difference is the phase from p itself.

< dep

The phase due to p equals the departure angle,
∠dep

∠(s− p) = ∠dep

The total phase is

∠G(s) = ∠G(p)− ∠dep = 180◦

Thus the departure angle from pole p is

∠dep = ∠G(p) + 180◦

Im(s)

Re(s)

Therefore, to find the departure angle from pole p, just find the phase at p.
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Departure Angle
Numerical Examples

Im(s)

Re(s)

45o

90o

150o

The phase at p is based on geometry.

∠G(p) = 150◦ − 90◦ − 45◦ = 15◦

So the departure angle is easy to calculate.

∠dep = ∠G(p) + 180◦ = 195◦
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Departure Angle
Numerical Examples

G(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + 1s+ 1

Poles at

• p1,2 = −.957± 1.23

• p3,4 = −.0433± .641

Zeroes at

• z1,2 = −.5± .866ı

Problem:
Find departure angle at
p1 = −.957 + 1.23.
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∠dep = 180◦+∠(p1− z1) +∠(p1− z2)−∠(p1− p2)−∠(p1− p3)−∠(p1− p4)

The difficulty is calculating the phase.
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Departure Angle
Numerical Examples

∠(p1 − z1) = ∠(−.957 + 1.23ı+ .5− .866ı)

= ∠(−.457 + .364ı)

= tan−1
(
.364

−.457

)
= 141.46◦

< ( -.457 + .364 i) z
1

p
1

∠(p1 − z2) = ∠(−.457 + 2.096ı) = 102.3◦

Obviously,
∠(p1 − p2) = 90◦

∠(p1 − p3) = 147.2◦, ∠(p1 − p4) = 116.03◦
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Departure Angle
Numerical Examples

Now that we have all the angles:

∠G(p1) = ∠(p1 − z1) + ∠(p1 − z2)− ∠(p1 − p2)− ∠(p1 − p3)− ∠(p1 − p4)

= 141.46◦ + 102.3◦ − 90◦ − 147.2◦ − 116.03◦

= −109.47◦

We conclude

∠dep,p1 = ∠G(p1)+180◦ = 70.53◦

By symmetry we could find

∠dep,p2
= −70.53◦
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Departure Angle
Numerical Examples

What about a pole on the real axis?

∠G(p) = 0◦ or 180◦
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Calculating the Departure Angle
DIY Example

G(s) =
s+ 2

(s+ 1)(s2 + 2s+ 2)

Im(s)

Re(s)
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Summary

What have we learned today?

Review: What happens at high gain?

• Angles of Departure

The Case of 90◦ Departure

• Calculating the center of asymptotes

Breaking off the Real Axis

• Break Points

What is the effect of small gain?

• Departure Angles

Next Lecture: Arrival Angles, Summary + Examples
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