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Abstract

Predicting p𝐾a values of small molecules has key applications in drug discovery and molecular simula-
tion. However, current methods face challenges in rigorously interpreting experimental data and ensuring
thermodynamic consistency between successive p𝐾a values. This study puts forward a protonation ensem-
ble framework to address these limitations by modeling the full space of possible protonation microstates.
Within this framework, we derive rigorous definitions connecting experimental macro-p𝐾as to underlying
micro-p𝐾a equilibria. Under this new framework, we develop Uni-p𝐾a, an accurate and reliable p𝐾a

predictor. Uni-p𝐾a first pretrains on over 1 million predicted p𝐾as from ChemBL to learn expressive
molecular representations. It is then finetuned on experimental datasets that enforce consistency with the
protonation ensemble definitions. The high-quality experimental p𝐾a datasets are fitted to this frame-
work by recovering underlying microstates from macro-p𝐾as. Modeling the complete ensemble enables
rigorous interpretation of macro-p𝐾a data, and inherently preserves thermodynamic consistency, improv-
ing the prediction accuracy of Uni-p𝐾a. Experiments demonstrate that Uni-p𝐾a achieves state-of-the-art
performance, outperforming previous methods. This novel protonation ensemble approach significantly
advances machine learning for p𝐾a prediction and molecular property modeling. Uni-p𝐾a provides a
good example of how to combine chemical knowledge and machine learning methods. Users can utilize
Uni-pKa for predicting and ranking the protonation states of molecules under various pH conditions via
https://app.bohrium.dp.tech/uni-pka.

Keywords: p𝐾a, Protonation, Molecular Pretraining

1 Introduction

In Brønsted-Lowry acid-base theory [1, 2], an acid is a molecule with ionizable hydrogen, which can transfer
to another molecule. In particular, an acid HA dissociates in a solution with the following chemical equilibrium,

HA −−−⇀↽−−− H+ (solvated) + A− , 𝐾a =
[H+] [A−]
[HA]

∗Equal contribution.
†Corresponding authors.
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where [·] is a chemical species’s activity (or dimensionless concentration, approximately). Then p𝐾a, the negative
logarithm (base 10) of the acid dissociation constant 𝐾a, is the key physical chemistry parameter describing the
acid/base property.

Many small organic drug molecules contain acid/base groups like carboxyl groups, amino groups, and 𝑁-
heterocyclic rings. Their p𝐾a values directly determine protonation states in physiological environments, influenc-
ing key properties like solubility, membrane permeability, and biomolecular interactions. As such, p𝐾a prediction
plays an important role in screening drug-like molecules with optimal pharmacokinetics, toxicity, and activity [3].
In molecular simulations assessing activity evaluation, such as free energy perturbation methods, accurate p𝐾a val-
ues also enable proper structure preparation and thermodynamic correction, improving accuracy [4, 5]. Therefore,
fast and reliable p𝐾a prediction approaches are highly valuable in drug discovery and related applications.

Quantum chemistry provides ab initio solutions for calculating thermodynamic properties like p𝐾a. Equipped
with comprehensive conformation research and well-designed correction methods, Schrödinger’s Jaguar p𝐾a pre-
diction software has reached experimental accuracy in a large chemical space [6, 7]. Jaguar predicts p𝐾a based on
DFT-calculated free energy. The results are very sensitive to the conformation because a conformational energy of
merely 1 kcal/mol is corresponding to more than 0.7 p𝐾a unit. Therefore, the best accuracy is usually reached under
the conformational ensemble average after a comprehensive conformational search, with a proportional increasing
amount of computation. In practice, the trade-off between speed requirement and accuracy expectation determines
the conformation search strategy.

With the growth of experimental data and cheminformatics, machine learning has enhanced molecular prop-
erty prediction across tasks [8, 9]. However, p𝐾a modeling faces unique challenges compared to predicting prop-
erties like ADME/T characteristics. A salient difficulty is the prevalence of multiple ionizable groups within drug
molecules. Both molecular and group-level information must be encoded, and general p𝐾a models should handle
polyprotonated and amphoteric cases. Framing p𝐾a prediction as a simple multi-label regression problem with
individual site labels overlooks this complexity.

With this consideration, recent chemoinformatics works use different descriptions of the molecular structure
and ionization sites to achieve promising accuracy and outstanding speed:

• Template-based methods utilize ionization site matching to empirical fragment values, along with correction
of surrounding structural context by Hammett linear free energy relationships [10], as implemented in early
versions of Epik [11].

• Local atomic descriptors represent ionization sites while global molecular descriptors cover full structures
in traditional machine learning techniques, including OPERA [12], the work of Baltruschat et al. [13], and
SPOC [14].

• Graph neural networks learn hierarchical embeddings of sites and structures at different levels of molecular
graphs, as demonstrated by MolGpKa [15], pKasolver [16], Graph-pKa [17], MF-SuP-pKa [18], and Epik
7 [19].

While recent methods have made progress on representing molecules and ionization sites for p𝐾a predic-
tion [20], fundamental limitations remain in interpreting experimental data and ensuring thermodynamic consis-
tency.

On the data side, most public p𝐾a data relies on macroscopic spectrophotometric or electrochemical measure-
ments, reflecting an apparent equilibrium between various protonation states [21, 22]. However, these macro-p𝐾as
are often ascribed to a single dominant site when incorporated into prediction datasets and training, inducing
bias [23]. As discussed for decades, rigorous interpretation requires accounting for coupled contributions from
all sites [24]. Recent attempts like the MIL framework proposed by Xiong et al. [17, 18] accommodate multiple
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ionization sites but remain ignorant of complex protonation networks and uniform treatment for amphoteric cases.
On the model side, thermodynamic coupling emerges when it comes to the modeling of poly-protonation [25].

Successive p𝐾a values along different protonation orders are constrained by chemical equilibrium relations, which
is violated in predictions with independent site modeling. These models not only compromise the rigor but also
risk thermodynamic inconsistency in the calculation of the pH-dependent distribution of protonation states [19].
Under the strong demand for protonation state ranking of given molecules, genuinely self-consistent p𝐾a prediction
remains an unmet need.

These intertwined limitations of current approaches, both in interpreting experimental data and ensuring ther-
modynamic consistency in predictions, underscore the need for a new modeling perspective. For example, a recent
study on the SAMPL6 challenge highlights the advantages of using standard free energies rather than p𝐾as when
representing complex protonation systems [25]. Inspired by such works, we put forward a protonation ensem-
ble framework, Uni-p𝐾a, that rethinks representations, data integration, and modeling under a unifying view that
captures collections of microstates.

On the data side, we design a general format of the p𝐾a dataset, which stores the determined molecular
structure of protonation states and is compatible with both micro- and macro-p𝐾a data. We reconstruct several
publicly available datasets in this format and release them to provide a rigorous, molecule-level interpretation.
This is a new benchmark for high-accuracy p𝐾a models.

On the model side, we introduce a modified Uni-Mol model into a free-energy-based machine learning frame-
work with novel pretraining strategies. It allows the model to learn from both macro- and micro-p𝐾as, naturally
preserves thermodynamic consistency, and enables multiple scenarios including p𝐾a prediction and protonation
state determination. After pretraining on large-scale predicted p𝐾as and finetuning on experimental p𝐾as, Uni-p𝐾a

achieves state-of-the-art accuracy for p𝐾a prediction compared to other chemoinformatics models.
Bridging the gap between data and model, we develop a structure enumerator to generate a protonation en-

semble from given molecules. It helps to build the dataset and propose a workflow for structure preparation in
molecular simulation, combining speed and accuracy.

In conclusion, we advance p𝐾a modeling by integrating chemical knowledge with data-driven techniques.
The released datasets and Uni-p𝐾a framework synergistically improve the interpretation of experimental data and
thermodynamic consistency.

2 Theory

Interpreting experimental macro-p𝐾a measurements requiresmodeling the underlying protonationmicrostates
and equilibria, which are obscured in bulk techniques. We emphasize a protonation ensemble perspective that
captures the collection of possible microstates corresponding to different protonation site combinations for a given
molecule (Figure 1).

For a core structure A with 𝑛 ionizable sites, there are theoretically 2𝑛 microstate structures spanning differ-
ent net charge macrostates from fully protonated to fully deprotonated. While unreasonable microstates can be
excluded based on chemical knowledge, this still defines a broad ensemble.

A key distinction arises between micro-p𝐾as describing the equilibrium between determined microstates, and
macro-p𝐾as reflecting the apparent equilibrium between total activities of all microstates with adjacent protonation
levels [26].

Micro-p𝐾a values arise from the standard free energy changeΔf𝐺
⊖
m between a definedmicrostate pair 𝑘-H𝑚A𝑚+

and 𝑖-H𝑚+1A(𝑚+1)+. Let Δf𝐺
⊖
m (·) be the standard molar Gibbs free energy change of formation at temperature 𝑇 ,
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Figure 1: The protonation ensemble of Amoxicillin. Only the ionization of amino (basic), phenolic hydroxyl (acidic), and
carboxyl (acidic) groups are taken into consideration. The red and blue arrows are all direct protonation and deprotonation
reactions between macrostates HA– and H2A. The bolded arrows is one of the shortest path from 2-H2A to 3-HA− .

𝑅 be the molar gas constant, and 𝛽 = (𝑅𝑇)−1. The micro-p𝐾a is:

𝐾 𝑘,𝑖a,𝑚 :=
[𝑘-H𝑚A𝑚+] [H+]
[𝑖-H𝑚+1A(𝑚+1)+]

= exp
{
−𝛽

[
Δf𝐺

⊖
m (𝑘-H𝑚A𝑚+) − Δf𝐺

⊖
m (𝑖-H𝑚+1A(𝑚+1)+)

]}
(1)

Macro-p𝐾a values originate from the coarse-grained behaviors across all microstates, derived as:

𝐾a,𝑚 :=
[H+]

∑
𝑖 [𝑖-H𝑚A𝑚+]∑

𝑖 [𝑖-H𝑚+1A(𝑚+1)+]
=

∑
𝑖 exp(−𝛽Δf𝐺

⊖
m (𝑖-H𝑚A𝑚+))∑

𝑖 exp(−𝛽Δf𝐺
⊖
m (𝑖-H𝑚+1A(𝑚+1)+))

(2)

This connection enables a proper interpretation of measured macro quantities in terms of specific microstate
equilibria. The macro-p𝐾a-free-energy formula 2 degrades to the micro-p𝐾a-free-energy formula 1 when the mi-
crostate index 𝑖, 𝑘 in both macrostates H𝑚A𝑚+,H𝑚+1A(𝑚+1)+ is unique. As a result, micro-p𝐾a is a special case of
macro-p𝐾a, and both micro- and macro-p𝐾a are described by Δf𝐺

⊖
m.

pH-dependence can also be introduced into the microstate free energies, as rigorously derived in Appendix A:

Δf𝐺m (H𝑚A𝑚+; pH) := Δf𝐺
⊖
m (H𝑚A𝑚+ (aq)) + 𝑚 ln 10

𝛽
pH, (3)

This gives the fraction of each microstate across the ensemble under particular pH conditions:

𝑤(𝑘-H𝑚A𝑚+; pH) :=
[𝑘-H𝑚A𝑚+]∑
𝑛

∑
𝑖 [𝑖-H𝑛A𝑛+]

=
exp(−𝛽Δf𝐺m (𝑘-H𝑚A𝑚+; pH))∑
𝑛

∑
𝑖 exp(−𝛽Δf𝐺m (𝑖-H𝑛A𝑛+; pH)) . (4)

Unifying the micro-p𝐾a-free-energy formula 1, macro-p𝐾a-free-energy formula 2, and distribution-fraction-
free-energy formula 4, we can see that free energies of all the microstates in the protonation ensemble contain the
complete information of the acid/base equilibrium. By capturing coupled equilibria from an energy perspective,
integrated equilibrium information can be extracted faithfully from both micro- and macro-p𝐾a data. Therefore,
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the protonation ensemble framework provides a foundation for accurate and rigorous p𝐾a prediction capabilities. It
allows predicting both p𝐾a values and pH-dependent protonation states through protonation ensemble construction
(Section 3) and microstate modeling of free energies (Section 4).

3 Toolkits and Datasets

3.1 Microstate enumerator

We implement a microstate enumerator for the systematic reconstruction of the protonation ensemble from a
single structure. It processes the structure of a part of macrostate H𝑚A𝑚+ to generate all microstates in H𝑚A𝑚+ and
a neighboring macrostate H𝑚+1A(𝑚+1)+ or H𝑚−1A(𝑚−1)+. The code is open source at https://github.com/dptech-
corp/Uni-pKa.

The enumerator uses a template containing SMARTS patterns of ionizable sites (Table 1). It is modified,
augmented, and annotated based on the template in MolGpKa [15] with chemical consideration. It contains 53
common acidic and basic groups with separate entries for deprotonation and protonation (Table 1) and covers all
the ionization patterns demonstrated by the Dwar-iBond dataset introduced in the section 3.2.

Table 1: An example of double entries. Every group in the template has double-type entries that match the A to B ionization
(deprotonation or basic ionization) and B to A ionization (protonation or acidic ionization). The A2B-type entry matches
carboxyl acid, cyanic acid, and imidic acid and labels the oxygen as the atom to be deprotonated, and the B2A-type entry
matches the deprotonated structure of those groups and labels the oxygen as the atom to be protonated.

type SMARTS atom index

A2B [$([#6]=[#8,#7]),$(C#N):0]-[OX2:1]-[H:2] 1
B2A [$([#6]=[#8,#7]),$(C#N):0]-[O-1:1] 1

When the enumeration starts, A and B Micro Pools are first built. They are dynamic sets containing mi-
crostates of higher and lower charged macrostates (Acids and Bases) respectively in two adjacent protonation
levels(Figure 2). The algorithm then iteratively grows the pools:

• A to B (A2B) round: deprotonation. For each structure in A Micro Pool, substructure matching finds all
possible deprotonation sites in the template and corresponding deprotonated structures go into BMicro Pool,
like the blue line in Figure 2.

• B to A (B2A) round: protonation. For each structure in B Micro Pool, substructure matching finds all
possible protonation sites in the template and corresponding protonated structures go into A Micro Pool,
like the red line in Figure 2.

Therefore, beginning with some of H𝑚A𝑚+, if the macrostate H𝑚−1A(𝑚−1)+ is needed, the initial struc-
tures will be thrown into A Micro Pool with B Micro Pool empty, and an A2B round will go first (Acid mode).
H𝑚+1A(𝑚+1)+ is also available when starting from a B2A round (Base mode).

The two rounds alternate until the two pools are not growing anymore or the maximum number of itera-
tions has been reached, then A and B Micro Pools are output as the final enumeration results. The max-iteration
limit is customized to reduce memory consumption and increase efficiency when the huge enumeration results
of very complex molecules are poured into the machine-learning model. In addition, another template filters out
chemically unreasonable structures during enumeration (Structure Filter in Figure 2), like the coexistence of acidic
ionization of amino group and basic ionization of amino group. These structures can be pruned because of their
small contribution to the protonation ensemble.
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Figure 2: A structure chart of the microstate enumerator

The whole protonation ensemble is obtained by successively running the enumeration process above in the A
and B modes. In the case of Figure 1, the whole macrostate of H2A and HA− can be enumerated from 1-H2A in
the A mode, H3A+ comes from H2A in the B mode, and A2− steps further from HA− in the A mode.

Thewidth (the number of microstates inmacrostates) and depth (the number of macrostates) of the protonation
ensemble enumeration are both determined by the coverage of the template. For example, if the template only
contains the basic ionization of amino groups, acidic ionization of phenolic hydroxyl groups, and acidic ionization
of carboxyl groups, the enumeration between H2A and HA− in Figure 1 will stop at the structures illustrated in the
figure. However, if the acidic ionization of amide is recorded in the template, more structures with the proton on
amide groups transferring to other sites will occur in H2A and HA− , increasing the width of enumeration results.
Furthermore, when the amide group in 1-A2− is deprotonated, the macrostates extend to H−1A3− , increasing the
depth of enumeration results.

A more comprehensive template leading to wider and deeper enumeration certainly provides a more com-
plete description of the protonation ensemble, but the number of enumerated structures grows exponentially with
the number of matched ionization sites of the molecule. This complexity is suffered both in protonation ensemble
reconstruction and the machine learning model. It is essential to prune negligible microstates with minimal influ-
ence on the accuracy of the distribution of the protonation ensemble. Template refinement and structural screening
are respectively procedure-oriented and result-oriented solutions. However, reasonable pruning rules in the vast
chemical space are case by case, and we finally choose the Dwar-iBond dataset as a representative of the ioniza-
tion pattern to determine the standard coverage of the template. Manual screening also partially complements the
structure filter to build a lightweight but effective training set for the machine learning model.

3.2 Reconstructed datasets

In existing public p𝐾a datasets, like DataWarrior pKaInWater [27] and i-Bond [28], each entry contains only
one microstate structure with a designated ionization site and mode, empirically assumed to correspond to the
reported macro-p𝐾a value. This risks a biased interpretation of experimental measurements reflecting coupled
equilibria.

To enable rigorous modeling, we reconstructed several datasets by leveraging our microstate enumerator to
recover the complete protonation ensembles underlying reported macro-p𝐾a values.

While the single provided structure is incomplete, properties like the core scaffold, initial charge, and reaction
type contain sufficient information for the enumerator to regenerate the full macrostates involved in the macro-p𝐾a

equilibrium through iterative templated protonation and deprotonation.
This process reformats the datasets into a unified table structure that stores the enumeratedmicrostates mapped

to each published macro-p𝐾a measurement (Table 2).
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Table 2: An example of the dataset table

SMILES p𝐾a Reference

COc1cccc2c1-c1c3c(OC)cccc3[nH+]c3cccc(c13)N2C,COc1cccc2c1-
c1c3c(OC)cccc3nc3cccc(c13)[NH+]2C»COc1cccc2c1-
c1c3c(OC)cccc3nc3cccc(c13)N2C

8.9 [29]

CCN(CC)c1cccc2cccc([NH+](CC)CC)c12»CCN(CC)c1cccc2cccc(N(CC)CC)c12 2.7 [30]

Our release covers 7 experimental and predicted datasets relevant to drug-like chemical space (Table 3), in-
cluding:

• Small molecule compilations like SAMPL - with exhaustive microstate enumeration
• Large predicted set from ChemBL - initial scaffold enumeration

Table 3: Basic information of the released datasets

Name Type Number of Datapoints Number of Microstates

ChemBL[31, 18] Predicted values 1116294 3139065
Dwar-iBond[27, 28] Experimental values 8232 27138
Novartis Acid[32, 18] Experimental values 112 345
Novartis Base[32, 18] Experimental values 168 696

SAMPL6[33] Experimental values 31 111
SAMPL7[34] Experimental values 20 43
SAMPL8[35] Experimental values 25 117

This work integrates robust chemical knowledge about protonation mechanisms with consistent experimental
measurements into high-quality datasets tailored for developing accurate and physically consistent machine learn-
ingmodels. Full details of the source data and reconstruction process are provided in Appendix B. Relevant datasets
can be obtained from https://www.aissquare.com/datasets/detail?pageType=datasets&name=Uni-pKa-Dataset.

4 Uni-p𝐾a Framework

4.1 Overview

The Uni-p𝐾a framework integrates the protonation ensemble, the microstate enumerator, and machine learn-
ing. The protonation ensemble framework establishes the theoretical foundation of microstate free-energy mod-
eling for multiple p𝐾a-related tasks and formulates the data flow of the framework. The microstate enumerator
implements the protonation ensemble generation and preprocesses the molecular data for the data flow of the
framework.

The machine learning part serves as the core algorithm of microstate free-energy modeling. Receiving molec-
ular structures from the microstate enumerator and organized by the protonation ensemble, it converts molecular
inputs to free-energy outputs in the data flow. Following a pretraining-finetuning paradigm, it learns from data
with different fidelity and grows into a highly accurate free-energy predictor in the model flow.

Figure 3 provides a schematic overview of the Uni-p𝐾a framework. Uni-p𝐾a employs a unified data prepa-
ration workflow across the stages of pretraining, finetuning, and inference. Instead of directly inputting a single
ionization reaction into the model, we perform protonation enumeration on the data points to obtain microstates for
the acid and base sides. Each microstate represents a molecule, and these molecules are then fed into the model.
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The model backbone originates from Uni-Mol [36], an expressive and universal 3D molecular representation
learning framework based on Transformer [37], which has demonstrated effectiveness across a range of molecular
property prediction tasks. In Uni-p𝐾a, We make necessary modifications, including the incorporation of charge
information and its FE2p𝐾a module under the protonation ensemble.

The pretraining phase involves four tasks: oneweakly supervised task, p𝐾a prediction, and three self-supervised
tasks, including 3D position recovery, masked atom prediction, and masked charge prediction. In the p𝐾a predic-
tion task, unlike previous models that directly predict p𝐾a values, Uni-p𝐾a ensures the consistency of molecular
protonation ensembles by taking individual microstate molecules as input, and the model’s output is interpreted
as predicted free energy. This is enabled by the theoretical analysis in Section 2 showing free energy models can
represent protonation equilibria. With the free energy predicted for each molecule in the data point, we employ the
free energy-p𝐾a formulas to predict the p𝐾a value for the entire data point and compute the loss with the ground
truth. Details are in the following subsections.

After pretraining, we conduct finetuning with experimental p𝐾a labels, enabling our model to possess the
capability of predicting high-precision p𝐾a, as depicted in the middle-right section of Figure 3.

Then, the resultant well-trained model is adept at serving three distinct tasks during the inference stage in-
cluding macro-p𝐾a prediction, micro-p𝐾a prediction, and distribution fraction prediction.

Data preparation workflow Acid micro state Base micro state

Pretraining Finetuning

Inference

Microstate 

enumeration
Data flow Data flow

Model flow

coord noises

Uni-Mol

Tasks

• Masked Atom Prediction

• 3D Position Recovery

• Masked Charge Prediction

• Raw FE2pKa Prediction

Atom 

Head

Coord 

Head

Charge

Head

masked charge𝑠

FE2p𝐾𝑎
Module

𝑚𝑎𝑠𝑘𝑒𝑑 𝑎𝑡𝑜𝑚𝑠

Uni-Mol

Atom Coordinate

Atom Charge

Atom Type

FE2p𝐾𝑎
Module

Uni-Mol

H2A
+ 𝑆𝑡𝑎𝑡𝑒

HA 𝑆𝑡𝑎𝑡𝑒

A− 𝑆𝑡𝑎𝑡𝑒

H2A
+ mic𝑟𝑜 𝑑𝐺

HA𝑚𝑖𝑐𝑟𝑜 𝑑𝐺

A− 𝑚𝑖𝑐𝑟𝑜 𝑑𝐺

𝑔𝑖𝑣𝑒𝑛 𝑝𝐻

Marco/
Micro
p𝐾𝑎

Distribution 
Fraction

Figure 3: Schematic overview of Uni-p𝐾a framework. Top: Data preparation workflow. We implement a microstate enu-
merator to systematically build the protonation ensemble from a single structure. Left: pretraining workflow. Our pretraining
strategy combines 1 weakly supervised task, p𝐾a-prediction, and 3 self-supervised pretraining tasks, masked atom prediction,
masked charge prediction, and 3D position recovery, to make the most use of the chemical information in 3 million microstate
structures. In the p𝐾a-prediction task, we introduce a free energy-to-p𝐾a(FE2p𝐾a) module to establish the relationship between
the model-predicted free energy and p𝐾a. This module also enables us to predict p𝐾a from free energies. Center right: fine-
tuning workflow. In this phase, we also employ the FE2p𝐾a module, training the model using experimental p𝐾a to enhance
its capability for predicting p𝐾a with high accuracy. Bottom right: inference workflow. After pretraining and finetuning,
the well-trained Uni-p𝐾a framework is equipped to handle three inference tasks, including macro p𝐾a prediction, micro p𝐾a

prediction, and distribution fraction prediction.
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4.2 Model input

Different from vanilla one, Uni-Mol in the Uni-p𝐾a framework has three inputs. Along with atom types and
atom coordinates, we also consider the influence of atom charges, as it is closely related to molecular protonation.
Atom representations are initialized through an embedding layer based on atom types. Atom charges are catego-
rized into discrete and continuous charges. For discrete charges, we consider states with formal charge values of 0,
1, and -1, representing neutral, positively charged, and negatively charged atoms. Similar to atom representations,
discrete charge representations are initialized through an embedding layer based on charge types. For continuous
charges, we employ a Multi-Layer Perceptron (MLP) to obtain their initial representations. The acquisition of pair
representations follows the same procedure as in vanilla Uni-Mol. It involves obtaining an atom distance matrix
using atom coordinates and initializing pair representations through invariant positional encoding. Further details
can be found in the Uni-Mol publication [36].

4.3 Pretraining

Inspired by the success of large language models in natural language processing [38, 39, 40, 41] and computer
vision [42], the machine learning model in the Uni-p𝐾a framework follows the pretraining-finetuning paradigm.
The objective of pretraining is to learn the underlying structures and features from the massive amount of data,
enabling the model to capture high-level representations. And finetuning allows the model to optimize its perfor-
mance on the specific prediction task through supervised learning.

In the scenario of p𝐾a prediction, previous work has proved the reasonability and effectivity of this paradigm,
using predicted p𝐾a values in the ChemBL dataset as ”low fidelity data” for a weakly supervised pretraining of
p𝐾a models [15, 16, 18]. Our strategy further combines one weakly supervised task and three self-supervised
pretraining tasks to make the most use of the chemical information in these 3 million microstate structures.

4.3.1 Weakly supervised task: p𝐾a-prediction

Firstly, supervised pretraining is performed to predict the labels provided with the ChembL data, helping
the model to learn mapping relationships from the large-scale labeled data. As mentioned previously, to ensure
the consistency of molecular protonation ensembles, Uni-Mol in Uni-p𝐾a takes individual microstate molecules as
input, and the output is interpreted as predicted free energy. Specifically, similar to the language model BERT [38],
we introduce a special atom called [CLS]. Its coordinates represent the center of the molecule. We use this atom
to represent the entire molecule.

Then, we introduce a FreeEnergy2p𝐾a (FE2p𝐾a) module. With a linear head, Uni-Mol utilizes the represen-
tation of [CLS] to obtain the raw vector output. This output will be interpreted as the predicted 𝛽Δf𝐺

⊖
ms for given

microstates, guaranteed by its relationship to the p𝐾a labels. In a data entry, if the free energy output of Uni-Mol
is 𝑔A1 , 𝑔

A
2 , · · · for the microstates in A macrostate, and 𝑔B1 , 𝑔

B
2 , · · · for the microstates in B macrostate, then the

final loss function of a single datapoint is a combination of Mean Square Error loss and the macro-p𝐾a-free-energy
Equation 2:

Lp𝐾a (𝒈A, 𝒈B; p𝐾a) =
1
2

[
p𝐾a + log10

∑
𝑖 e−𝑔

B
𝑖∑

𝑖 e−𝑔
A
𝑖

]2

(5)

This loss function links the predicted free energy of Uni-Mol with the experimental macro-p𝐾a label to enforce
consistency with the protonation ensemble view:

• For each data point, Uni-Mol in Uni-p𝐾a outputs free energy vectors 𝒈A and 𝒈B for the microstates in
macrostates A and B.
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• These are used to compute the total Boltzmann-weighted partition functions of A and B microstates based
on Equation 2.

• The loss function (Equation 5) compares this logarithmic partition-function ratio to the reported macro-p𝐾a

through a Mean Squared Error term.
• By back-propagating this ensemble-aware loss, Uni-Mol inUni-p𝐾a learns consistent free energy predictions.
We also note that standard label preprocessing like scaling would break the physical meaning of the outputs.

However, translation maintains interpretation as pH-dependent free energies, as proved in Appendix A.

4.3.2 Self-supervised tasks

Additionally, we introduce three self-supervised learning tasks in the pretraining phase. Apart from the exist-
ing masked atom prediction and 3D position recovery tasks in Uni-Mol, we add a new masked charge prediction
task, as atom charges are closely related to p𝐾a prediction.

Specifically, similar to the approach used in masked language models, we randomly select 15% of the atoms
in the molecule to mask and use [MASK] token prediction by replacing masked atom types with a [MASK] token
and predicting their original ones during pretraining with a linear head. We utilize the cross-entropy loss function
for this task and this loss constitutes a part of the original Uni-Mol loss. Here, we denote this loss as Latom.

Then, in Uni-p𝐾a, we introduce a unique task known as masked charge prediction. Molecular electronegativ-
ity is closely related to acid-base properties, and in p𝐾a prediction, the transfer of protons in a molecule is often
associated with the distribution of atom charges. By predicting atom charges, the model can learn about the electro-
static interactions between different atoms, thereby enhancing its understanding of proton transfer. Similar to the
masked atom prediction, we also performmasking for discrete charges of these masked atoms. The masked charges
are replaced with a [MASK] token and predict their original ones during pretraining. We also use the cross-entropy
loss function in this task. The loss for this task is referred to as Lcharge. We consider that masked charge prediction
contributes to a deeper understanding of a molecule’s chemical properties, leading to more accurate predictions of
acid-base properties and p𝐾a values.

Furthermore, we aim for the model to learn the 3D structural information within molecules. Therefore, we
retain the 3D positions recovery task from Uni-Mol. Since molecular coordinates are continuous values, we intro-
duce noise to the masked atoms’ coordinates instead of masking and train the model to recover the ground truth
coordinates from corrupted ones. This allows the model to capture structural information during pretraining. We
employ two additional heads to recover the true coordinates from corrupted ones. The first one is the pair-distance
prediction head, where the model is tasked with recovering the original Euclidean distance matrix based on the
pairwise distances computed from the corrupted coordinates. The second head is the SE(3)-equivariant coordinate
prediction head, where the model aims to recover the true coordinates while preserving the equivariance to rotation
and translation of the molecule. We use the smooth ℓ1 loss for both of these tasks. They are denoted as Lcoord and
Ldist, and they also constitute a part of the original Uni-Mol loss.

4.3.3 Training objective

Due to the combination of supervised and self-supervised pre-training, the training complexity increases, and
we adjust the proportion of self-supervised task loss accordingly. The final composition of the loss function and
corresponding formulas are as follows:

Lall = Lp𝐾a + Lcharge + Latom + 2Lcoord + Ldist (6)
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4.4 Finetuning

To ensure consistency with the pretraining phase, we maintain the same data preparation workflow during the
finetuning process. During finetuning, we also follow the setup of the p𝐾a prediction task in the pretraining phase.
The pretrained Uni-Mol model in Uni-p𝐾a is then finetuned on the Dwar-iBond dataset using the loss function 5.

For aiding model convergence, the p𝐾a target is translated by the average of the dataset in both the pretraining
and finetuning stages. In addition, regarding molecules, leveraging the ability to swiftly generate multiple random
conformations allows us to incorporate data augmentation techniques during finetuning. This approach enhances
both performance and robustness.

In summary, pretraining and finetuning synergistically integrate the benefits of representation learning at scale
from abundant inaccurate p𝐾as, with focused supervised tuning on limited accurate measurements.

4.5 Inference

The pretraining and finetuning together develop an accurate and robust machine learning model in Uni-p𝐾a,
capable of effectively learning from macro-p𝐾a data while preserving thermodynamic consistency. Taking advan-
tage of the physical interpretation of microstate free-energy modeling, Uni-p𝐾a supports multiple prediction tasks
in a unified workflow (Figure 4):

Figure 4: The inference stage of Uni-p𝐾a
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Macro-p𝐾a prediction Macro-p𝐾a prediction works analogously to the dataset reconstruction and finetuning
process. The input is a molecule and its ionization mode (acidic or basic). The microstate enumerator first recovers
the complete macrostates involved in the equilibrium as the model input. Uni-Mol in Uni-p𝐾a then predicts the pH-
dependent free energies of the constituent microstates. Finally, the overall macro-p𝐾a is determined from the total
Boltzmann-weighted partition functions of the macrostate microstates using the macro-p𝐾a free energy formula in
Equation 2.

Micro-p𝐾a prediction Micro-p𝐾a prediction directly takes as input the specified reactant and productmicrostates.
Their predicted free energy difference from Uni-Mol in Uni-p𝐾a is used to obtain the micro-p𝐾a value through the
micro-p𝐾a free energy formula in Equation 1. This can be considered a special case of the macro-p𝐾a prediction
workflow with a single, specified microstate in both macrostates.

Distribution fraction prediction The protonation state distribution fraction prediction starts from an initial
molecule structure. The microstate enumerator works successfully across higher and lower net charge states, ex-
ploring the complete protonation ensemble until hitting the template limits. Uni-Mol in Uni-p𝐾a then predicts the
free energies of all the generated microstates. Finally, by applying the distribution fraction formula in Equation 4
using the specified pH, the fraction of eachmicrostate can be calculated. The dominant protonation state is typically
chosen as the maximum fraction microstate for downstream usage.

By unifying the protonation ensemble, the microstate enumerator, and Uni-Mol, the Uni-p𝐾a framework en-
ables reliable and consistent p𝐾a prediction workflow across diverse tasks.

5 Results and Discussion

5.1 Interpreting Macro-pKa Data

Accurately modeling macro-p𝐾a measurements requires accounting for the complete protonation ensemble,
which refers to the collection of microstates with different protonation site combinations for a molecule. We
analyzed our reconstructed datasets to quantify the additional information from the full enumeration.

As shown in Table 3, mapping the public p𝐾a datasets from individual structures to the underlying ensembles
expands the data substantially. For instance, the Dwar-iBond dataset grows over 3-fold from 8,232 single data points
to 27,138 enumerated microstates. This affirms the intrinsic complexity obscured by typical data representations.

We can visualize how ensemble modeling avoids biased assumptions about dominant sites. On the left of
Figure 5, the acidity of the carboxyl group is known to be much stronger than the phenolic hydroxyl group, leading
to the obvious assignment. While for molecules with chemical groups of similar acidity as shown on the right of
Figure 5, ambiguities often exist in attributing macro-p𝐾as to specific sites, and any assignment is an oversimplifi-
cation and introduces bias to data. Our protonation ensemble modeling reveals alternative chemically reasonable
sites, including the dimethylamino group and the phenol group.

Recent works have adopted multi-instance learning (MIL) to decompose macro-p𝐾as into contributions from
specific sites [17, 18]. However, MIL is a downgrade framework of the proton ensemble and risks misattribu-
tions for complex cases like Figure 1, shown in Appendix A. Our iterative, ensemble-aware enumerator explores
the full space, avoiding assumptions. Thoroughly sampling the ensemble is imperative for rigorous macro-p𝐾a

interpretation.
The accuracy of Uni-p𝐾a benefits from the dataset built under the protonation ensemble framework. In Ta-

ble 11, ablation studies show that full microstates in the Dwar-iBond dataset in the finetuning stage improve the
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Figure 5: Two examples of the ionization site assignment: 2-hydroxybenzoic acid [43] (left) and 2-
((dimethylamino)methyl)phenol [44] (right)

RMSE in the cross-validation and on most external datasets. As we have emphasized, a correct interpretation of
data is key to the progression of the model. Our reconstructed datasets show chemical soundness as well as help
the model to grasp the chemical properties.

In summary, modeling the complete protonation ensemble provides a stronger foundation for integrating ex-
perimental data, as quantified by the expansion of our reconstructed datasets. By preventing biased assumptions,
ensemble-based modeling enables more accurate p𝐾a prediction.

5.2 Preserving Thermodynamic Consistency

Our protonation ensemble framework inherently preserves thermodynamic consistency between coupled p𝐾a

values, while traditional independent site predictions risk inconsistencies. We demonstrated this through example
protonation cycles and quantitative validation.

Figure 6: A thermodynamic cycle in the protonation of Amoxicillin. 𝐾𝑖 is the dissociation equilibrium constant. The green
and yellow arrows stand for different protonation routes.

As illustrated in Figure 6, the predicted micro-p𝐾as from Uni-p𝐾a automatically satisfy the thermodynamic
relationship 𝐾1𝐾2 = 𝐾3𝐾4 for a sample molecule. In the microstate free energy modeling under the protonation
ensemble framework, Uni-Mol in Uni-p𝐾a gives 4 free energies. We denote predicted equilibrium constant as 𝐾̃𝑖 ,
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predicted 𝛽Δf𝐺
⊖
m as 𝑔. As the workflow shown in Figure 4, the output of Uni-p𝐾a satisfies

𝐾̃1𝐾̃2 = exp {− [𝑔(1-HA−) − 𝑔(1-H2A)]} · exp
{
−

[
𝑔(1-H2A) − 𝑔(1-H3A+)

]}
= exp

{
−

[
𝑔(1-HA−) − 𝑔(1-H3A+)

]}
= exp {− [𝑔(1-HA−) − 𝑔(2-H2A)]} · exp

{
−

[
𝑔(2-H2A) − 𝑔(1-H3A+)

]}
= 𝐾̃3𝐾̃4

In contrast, baseline methods treating each site independently may violate this constraint, introducing unphys-
ical results.

In conclusion, the protonation ensemble framework uniquely preserves thermodynamic constraints between
interdependent p𝐾a values. By inherently encoding coupled equilibria, our approach provides a basis for rigorous
p𝐾a prediction.

5.3 Model Accuracy and Generalizability

We evaluated Uni-p𝐾a’s performance on external datasets spanning diverse chemical spaces to assess gener-
alizability. As summarized in Table 4, Uni-p𝐾a achieves state-of-the-art accuracy compared to recent chemoinfor-
matics methods on the Novartis, SAMPL6, and SAMPL7 benchmarks.

Table 4: Performance on External Datasets

Method
Novartis

SAMPL6 SAMPL7
Acid Base

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Schrödinger Epik Classical [11]ab 0.99 1.531 0.876 1.175 0.784 0.962 1.121 1.648
ChemAxon Marvinab 0.808 1.144 0.835 1.145 1.007 1.248 0.559 0.708

ACD/Labsb —— —— —— —— 0.55 0.783 —— ——
SPOC + XGBoost [14]c —— —— —— —— 0.767 1.011 1.476 1.622

SPOC + NN [14]c —— —— —— —— 0.832 1.141 0.932 1.156
OPERA [12]d —— —— —— —— 0.97 1.283 2.135 2.515

MolGpKa [15]ae 0.849 1.287 0.789 1.064 0.522 0.773 0.797 0.98
GraphpKa [17]e —— —— —— —— 0.594 0.726 0.758 0.934

MF-SuP-pKa [18]ef 0.85 1.09 0.61 0.79 0.687 0.751 0.656 0.816
Schrödinger Epik v7 [19]g —— —— —— —— —— 0.92 —— ——

Uni-p𝐾a (FCh) 0.810 1.061 0.493 0.653 0.554 0.716 0.570 0.735
Uni-p𝐾a (GCi) 0.846 1.109 0.550 0.697 0.719 0.959 0.487 0.609
Uni-p𝐾a (xCj) 0.787 1.078 0.551 0.722 0.781 1.068 0.433 0.603

aNovartis Acid / Base results were reported in [15].
bSAMPL6 and/or SAMPL7 results were reported in the SAMPL challenge summaries [33, 34].
cSAMPL6 results were reported in original literature [14], and SAMPL7 results in [17].
dSAMPL6 and SAMPL7 results were reported in [17].
eSAMPL6 and SAMPL7 results were reported in [18].
fNovartis Acid / Base results were reported in original literature [18].
gSAMPL6 result was reported in original literature [19].
h using Formal Charge in the pretraining, finetuning and inference stages, the default setting.
i using Gasteiger Charge [45] in the pretraining, finetuning and inference stages.
j using xtb-GFN2 Charge [46] in the pretraining, finetuning and inference stages.

We also benchmarked against blind challenge submissions on the SAMPL8 dataset in Table 5. The submitted
macro-p𝐾a results were not assigned to specific macrostate pairs in the challenge. We choose the macro-p𝐾a
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prediction closest to the experimental value as the final answer of the submission. For Uni-p𝐾a, we manually
assign experimental values to macrostate pairs based on chemical experience. Uni-p𝐾a significantly outperforms
all entries, this provides an unbiased assessment of the predictive advantages.

Table 5: SAMPL8 Challenge

Submission Name MAE RMSE

Chemaxon 1.300 1.511
RobertRaddi_DeepGP 2.365 3.407

3DS 1.291 1.448
SabatinoRodriguezPaluch_uESE_extra 2.666 3.468

ZhiyiWu 3.212 4.642
ECRISM 1.545 2.420

Uni-p𝐾a (FC) 0.631 0.878
Uni-p𝐾a (GC) 0.642 0.949
Uni-p𝐾a (xC) 0.619 0.927

As detailed in Section 3.1 andAppendix B, themacrostates in the training set of Uni-p𝐾a are abridged to reduce
the training consumption, while the microstates in the external test sets come directly from the full enumeration
without any hand-pick. The biggest risk of the tandem of the enumerator and the neural network is that the unusual
structures generated by radical enumeration are unfamiliar to the neural network trained on the pruned dataset.
Therefore, the results also reveal the effectiveness of the lightweight training set, the reliability of the enumerator,
and the extrapolation ability of the model, contributing to the performance of the whole prediction workflow.

In summary, experiments on standardized benchmarks demonstrate that the enumerator and the neural net-
work in Uni-p𝐾a cooperate to achieve state-of-the-art accuracy compared to prior chemoinformatics techniques.
The consistent improvements across heterogeneous evaluation sets validate the effectiveness of our protonation
ensemble approach.

5.4 Comparison to Quantum Mechanics Methods

To evaluate Uni-p𝐾a’s performance against rigorous first-principles calculations, we conducted comparative
case studies with the state-of-the-art ab initio p𝐾a prediction software Jaguar.

As shown in Tables 6, 7 and 8, Uni-p𝐾a demonstrates promising accuracy relative to Jaguar, given practical
computational constraints. For example, without conformational sampling, Uni-p𝐾a matches or exceeds Jaguar’s
accuracy on a family of drug-like molecules in Table 7. This highlights the benefits of data-driven training on large
datasets.

However, accuracy challenges remain for certain complex systems in Table 6, where Jaguar’s accuracy im-
proves significantly with exhaustive conformational modeling. While Uni-p𝐾a cannot match this, it provides a
much faster alternative within reasonable tolerances for many applications.

While Jaguar’s DFT calculations provide rigorous p𝐾a estimates, systematic errors remain. To compensate,
Jaguar employs an empirical ”shell model” that assigns molecules to classes with parameterized corrections. How-
ever, this classification contains some arbitrariness, as the original authors note when evaluating guanidine deriva-
tives in Table 8.

By default, these molecules fall under the guanidine shell. Yet the “partially substituted amidine” shell yields
superior accuracy, with a mean absolute error of just 0.38 p𝐾a units without conformational sampling. The authors

15

https://doi.org/10.26434/chemrxiv-2023-lw5k0 ORCID: https://orcid.org/0009-0005-6150-2797 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-lw5k0
https://orcid.org/0009-0005-6150-2797
https://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6: Comparison between Uni-p𝐾a and Jaguar results: amidines in rings

R1 R2 –R5a R6 X Exp. value Uni-p𝐾a Jaguarb Jaguar+c Jaguar++d

CN —— CH3 O 9.7 7.9 9.1 9.0 9.7
CN R3 ––F CH3 O 8.1 6.7 6.6 7.7 8.2
CN R2 ––F CH3 O 7.4 6.8 6.0 6.0 7.4
CN —— CHF2 O 7.3 5.9 7.3 7.3 7.7
CN R4 ––CF3 CH3 O 7.3 6.7 6.6 5.4 7.0
CN R5 ––CF3 CH3 O 7.0 6.6 6.8 6.8 7.3
CN R3 ––F CH2F O 6.7 6.0 4.4 5.0 7.3
CN R5 ––CF3 CH2F O 6.3 5.8 4.7 6.1 6.3
CN R5 ––CF3, R3 ––F CH3 O 5.9 5.7 5.5 5.8 6.0
CN R4 ––CF3, R3 ––F CH3 O 5.8 5.7 3.8 5.2 6.0
CN R2 ––F, R3 ––F CH3 O 5.8 5.5 5.1 5.8 6.3
CN R2 ––F, R3 ––F CH2F O 5.1 5.0 3.2 5.5 4.7
Cl —— CH3 O 9.8 8.2 9.2 9.4 9.8
Cl R2 ––F, R3 ––F CH3 O 6.3 5.9 5.1 6.2 6.4
Cl —— CH3 S 9.0 8.0 7.8 9.5 9.0
Cl R2 ––F, R3 ––F CH3 S 6.1 5.9 5.3 6.1 6.3

MAE 0.70 1.07 0.56 0.20
Outlier numbere 5 8 3 0

aH by default
bw/o conformational search
cw/ simple conformational search
dw/ comprehensive conformational search, weighting 10 conformers
eA prediction with the error larger than 1 p𝐾a unit is regarded as an outlier.
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Table 7: Comparison between Uni-p𝐾a and Jaguar results: tertiary amines

A B 𝑛 R Exp. value Uni-p𝐾a Jaguara Jaguar+ Jaguar++

A9 B2 0 OCH3 9.9 9.13 9.43 8.13 9.11
A8 B7 0 OCH3 8.5 8.56 7.94 8.23 7.90
A9 B7 1 OCH3 9.2 8.76 8.23 8.68 8.69
A9 B6 1 OCH3 9.1 8.86 9.02 9.30 9.13
A8 B5 0 OCH3 8.6 8.50 7.81 9.04 8.23
A8 B4 0 OCH3 9.3 8.89 8.49 8.34 9.43
A8 B3 0 H 9.3 8.97 8.68 8.62 8.66
A5 B2 1 OCH3 8.5 8.21 6.60 7.96 8.18
A5 B5 0 OCH3 8.4 8.11 7.34 7.03 7.79
A5 B5 0 H 8.4 8.14 7.80 7.22 7.78
A6 B2 1 OCH3 6.5 6.72 7.96 7.91 8.25
A6 B1 0 OCH3 7.5 6.88 8.50 7.04 7.89
A11 B2 1 H 8.9 8.26 8.33 8.12 8.61
A11 B2 1 OCH3 8.9 8.27 8.76 9.05 8.29
A10 B2 0 H 9.0 8.52 8.72 8.33 8.62
A10 B2 0 OCH3 9.0 8.56 8.61 9.17 8.32
A12 B2 1 OCH3 9.0 7.85 8.24 9.41 9.27
A13 B2 0 OCH3 8.5 7.29 8.20 8.42 8.00
A2 B2 0 OCH3 8.0 8.36 8.15 7.69 7.11
A2 B2 0 H 8.5 8.32 6.54 8.22 7.71
A7 B2 0 OCH3 8.1 7.93 8.21 7.56 6.47
A14 B2 0 OCH3 6.0 7.68 7.78 7.07 6.93
A1 B2 0 OCH3 8.6 7.98 8.51 8.32 8.53
A1 B2 0 H 8.6 7.91 8.36 8.57 8.38
A3 B2 0 OCH3 8.4 7.25 7.98 7.88 8.35
A4 B2 0 OCH3 8.2 7.76 7.83 8.00 7.96
A4 B2 0 H 8.0 7.73 7.63 7.80 7.90

MAE 0.52 0.69 0.56 0.51
Outlier number 4 6 5 2
Best numberb 9 6 4 8

aThe symbol is the same as 6, where the conformational search takes place in the vacuum.
bFrequency to be the best among 4 methods
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Table 8: Comparison between Uni-p𝐾a and Jaguar results: guanidines in rings

R1 R2 R3 R4 Exp. value Uni-p𝐾a Jaguara Jaguar+ Jaguar++

Cl H H H 9.9 9.32 8.62 8.70 8.70
Cl H H CH2CHF2 8.9 8.32 7.02 6.93 7.43
H H H CH3 10.6 10.64 10.47 10.58 10.49
H H H CH2CHF2 9.7 8.93 8.42 7.98 8.61
H H H CH2CF3 9.2 8.15 7.36 6.65 7.65
Cl Cl H CH2CHF2 8.5 8.10 6.17 6.23 6.80
H H OCH3 CH2CHF2 10.2 8.72 9.53 9.07 9.23

OCH3 Cl H CH2CHF2 8.9 8.53 6.68 7.19 6.65
Cl H Cl CH2CHF2 7.8 7.33 5.00 5.26 6.11

MAE 0.64 1.60 1.68 1.34
Outlier number 2 7 8 7

aThe symbol is the same as 6, where the conformational search takes place in the vacuum, and the default Guanidine shell is used for calibration.

suggest structural differences between the guanidine training set and these targets contribute to the discrepancy.
In contrast, Uni-p𝐾a adapts more flexibly across chemical spaces. Rather than human-crafted classes, it relies

on automated pretraining over diverse data to incorporate chemical knowledge. While Uni-p𝐾a does not match the
amidine shell’s accuracy here, it still outperforms Jaguar’s default corrections.

These benchmarks reveal a complementary synergy between the computational expense of QM methods and
the data efficiency of machine learning techniques like Uni-p𝐾a. Integrating the two approaches to balance speed
and accuracy is an exciting direction for future hybrid modeling.

In conclusion, comparisons to rigorous QM calculations substantiate Uni-p𝐾a’s viability as an efficient surro-
gate for p𝐾a prediction, within limitations. Targeted integration of first-principles training data could help address
areas for improvement revealed by QM benchmarks. This further motivates the development of unified ensemble
modeling frameworks.

6 Conclusions

This work puts forward the protonation ensemble framework to enable machine learning models like our
Uni-p𝐾a to represent acid-base equilibria with greater rigor and thermodynamic consistency. Uni-p𝐾a leverages
pretraining on abundant inaccurate data and finetuning on curated experimental measurements to learn highly ex-
pressive molecular representations. By modeling microstate collections, it circumvents limitations of conventional
independent site assumptions and improves the interpretation of macro-p𝐾a measurements.

We develop high-quality reconstructed datasets mapping macro-p𝐾a values to complete underlying microstate
information. These rigorous benchmarks integrate chemical knowledge and experimental data to enable accurate
machine learning.

18

https://doi.org/10.26434/chemrxiv-2023-lw5k0 ORCID: https://orcid.org/0009-0005-6150-2797 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-lw5k0
https://orcid.org/0009-0005-6150-2797
https://creativecommons.org/licenses/by-nc-nd/4.0/


Our microstate enumerator toolkit and prediction workflow unify speed and efficiency for tasks ranging from
p𝐾a prediction to determining pH-dependent protonation fractions. In addition to improved performance over
previous methods on small molecule datasets, Uni-p𝐾a demonstrates promising competitiveness against costly
quantum chemistry calculations like Jaguar, given practical computational constraints.

However, accuracy challenges persist for certain complexes with subtle stereoelectronic effects like the pro-
ton sponge [47, 48] and Meldrum’s acid [49, 50, 51, 52], not well represented in training data. Tautomerism also
remains difficult to model comprehensively due to the scarcity of experimental data. Integrating data-driven tech-
niques like our framework with first-principles training is an exciting path forward. Our protonation ensemble
approach establishes a strong foundation for future synergistic hybrid modeling to address these interconnected
equilibria.

By rethinking thermodynamics, data, and modeling under a unifying perspective, this work makes important
progress in integrating chemical knowledge with machine learning. Our concepts, datasets, and techniques pave
the way for continued advances in this productive fusion.
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A pH-dependent Free Energy

A.1 The definition of pH-dependent free energy

We start from the fundamental acid/base equilibrium theory. Considering the simplest acidic ionization reac-
tion in water,

HA+ (aq) −−−⇀↽−−− H+ (aq) + A (aq), 𝐾⊖
a =

[H+] [A]
[HA+] ,

its standard molar Gibbs free energy change of the reaction is

Δr𝐺
⊖
m = Δf𝐺

⊖
m (A (aq)) − Δf𝐺

⊖
m (HA+ (aq)) = − 1

𝛽
ln𝐾⊖

a , 𝛽 =
1
𝑅𝑇

,

to which p𝐾a is related as
p𝐾a =

𝛽

ln 10
Δr𝐺

⊖
m.

The Δr𝐺
⊖
m above can be regarded as the free energy difference between the thermodynamic standard state of A (aq)

and HA+ (aq) in the presence of the thermodynamic standard state of H+ (aq) (pH = 0). Therefore, the pH-related
free energy difference is

Δr𝐺m (pH) = Δr𝐺
⊖
m + 𝑅𝑇 ln[H+ (aq)] = Δr𝐺

⊖
m − ln 10

𝛽
pH.

If we define the pH-dependent free energy of AH+ (aq) as

Δf𝐺m (HA+; pH) = Δf𝐺
⊖
m (A (aq)) − Δr𝐺m (pH) = Δf𝐺

⊖
m (AH+ (aq)) + ln 10

𝛽
pH,

then it can be generalized to the case of multi-protonated acid, that is,

H𝑚A𝑚+ (aq) −−−⇀↽−−− mH+ (aq) + A (aq), Δr𝐺m (pH) = Δr𝐺
⊖
m + 𝑚

𝛽
ln[H+ (aq)]

and we have

Δf𝐺m (H𝑚A𝑚+; pH) = Δf𝐺
⊖
m (A (aq)) − Δr𝐺m (pH) = Δf𝐺

⊖
m (H𝑚A𝑚+ (aq)) + 𝑚 ln 10

𝛽
pH, (7)

in which there is a linear relationship between the free energy and pH, with a slope proportional to the net charge.

A.2 The relationship between MIL and the proton ensemble learning framework

MIL framework implements the macro-micro p𝐾a formula in the model training [17, 18]. For acidic disso-
ciation, like 2-H2A to 1-HA– (phenolic hydroxyl group) and 2-HA– (carboxylic group) in Figure 1, the formula
is

p𝐾a,𝑚 = − log10

(∑
𝑘

10−p𝐾𝑘
a,𝑚

)
(8)

For basic dissociation, like 2-HA– to 2-H2A (carboxylic group) and 3-H2A (amino group) in Figure 1, the formula
is

p𝐾a,𝑚 = log10

(∑
𝑖

10p𝐾 𝑖
a,𝑚

)
(9)

This framework successfully handles the example on the right of Figure 5 with the formula 8. However, it
still cannot deal with more complex molecules. Like the case of Amoxicillin H2A to HA– in Figure 1, starting
from any microstate, MIL always overlooks three in the six microstates, whichever the initial microstate is chosen.
Furthermore, due to the difference between formula 8 and 9, two different models are responsible for acidic and
basic cases, which increases the training cost and loses chemical information of bidirected ionization.

Formula 8 and 9 are accommodated in our proton ensemble framework as special cases where there is only
one microstate in a macrostate. If 𝑖 is unique in the summation of the denominator (A macrostates) in the formula 2
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and is thus omitted, we have

p𝐾a,𝑚 = − log10
[H+]

∑
𝑘 [𝑘-H𝑚A𝑚+]

[H𝑚+1A(𝑚+1)+]
= − log10

(∑
𝑘

[H+] [𝑘-H𝑚A𝑚+]
[H𝑚+1A(𝑚+1)+]

)
= − log10

(∑
𝑘

𝐾𝑘a,𝑚

)
= log10

(∑
𝑘

10−p𝐾𝑘
a,𝑚

)
deriving Equation 8. If 𝑖 is unique in the summation of the numerator (B macrostates) in the formula 2 and is thus
omitted, we have

p𝐾a,𝑚 = − log10
[H+] [H𝑚A𝑚+]∑
𝑖 [𝑖-H𝑚+1A(𝑚+1)+]

= log10

∑
𝑖 [𝑖-H𝑚+1A(𝑚+1)+]
[H+] [H𝑚A𝑚+] = log10

(∑
𝑖

[𝑖-H𝑚+1A(𝑚+1)+]
[H+] [H𝑚A𝑚+]

)
= log10

(∑
𝑖

1
𝐾 𝑖a,𝑚

)
= log10

(∑
𝑖

10p𝐾 𝑖
a,𝑚

)
deriving Equation 9.

A.3 Label translation in Uni-p𝐾a framework

It is obvious that Δf𝐺
⊖
m = Δf𝐺m (pH = 0). Hence, the macro p𝐾a-free energy formula can be generalized as

− log10

∑
𝑖 exp (−𝛽Δf𝐺m (𝑖-H𝑚A𝑚+; pH = 𝑡))∑

𝑖 exp
(
−𝛽Δf𝐺m (𝑖-H𝑚+1A(𝑚+1)+); pH = 𝑡

)
= − log10

∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚A𝑚+) − 𝑚 ln 10 · 𝑡

)∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚+1A(𝑚+1)+) − (𝑚 + 1) ln 10 · 𝑡

)
= − log10

10−𝑚𝑡 ∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚A𝑚+)

)
10−(𝑚+1)𝑡 ∑

𝑖 exp
(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚+1A(𝑚+1)+)

)
= − log10

10−𝑡 ∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚A𝑚+)

)∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚+1A(𝑚+1)+)

)
= − log10

∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚A𝑚+)

)∑
𝑖 exp

(
−𝛽Δf𝐺

⊖
m (𝑖-H𝑚+1A(𝑚+1)+)

) + 𝑡

= p𝐾a,𝑚 + 𝑡

and that is why the physical meaning of Uni-Mol’s raw output is preserved when the pH label is translated with a
constant 𝑡.

B Datasets

• ChemBL dataset: There are a bulk of small organic molecules in ChemBL [31] with predicted p𝐾a values
by ChemAxon software. Our version is based on the edited version and the protonation templates in MF-
SuP-pKa [18]. The core structure and initial net charge are directly determined by the initial one, and the
ionization mode is determined by the acid/base classification in MF-SuP-pKa. A simple enumerator, which
only iterates once from the initial structure, is chosen to adapt to the data size and quality.

• Dwar-iBond dataset: pKaInWater.dwar is a DataWarrior [27] sample dataset containing initial struc-
tures, color-labeled ionization sites and modes, and measuring methods. It has been used for model training
in several works [12, 16, 17]. i-Bond [28] is a bond energy database with p𝐾a subdatabase, containing ini-
tial structures, color-labeled ionization sites, measuring methods, and references. We combine almost all
entries from pKaInWater and selected entries from i-Bond. The core structure is directly determined by
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the initial one, while the initial net charge and the ionization mode are judged and curated comprehensively
with chemical sense by the initial structure, p𝐾a value, color label, and original reference. Our microstate
enumerator is fully used. The enumeration results are further cleaned to exclude chemically unreasonable
and non-contributive structures.

• Novartis Acid / Base dataset: As a dataset mainly containing drug-like molecules originally released by
Liao et al. [32], it was commonly used for external tests in previous studies [12, 13, 15, 16, 18, 19]. We follow
the separation of acid and base in MF-SuP-pKa and determine the ionization mode. The core structure is
directly determined by the initial one, and the initial net charge is judged and curated comprehensively with
chemical sense by the initial structure and p𝐾a value. Our microstate enumerator is fully used.

• SAMPL6, SAMPL7, and SAMPL8 dataset: Macro-p𝐾a prediction is one of the tracks in SAMPL chal-
lenges and has attracted a variety of approaches [33, 34, 35], and is also used for external tests in previous
studies [14, 17, 18, 19]. The core structure is directly determined by the initial one after washing off coun-
terions, while the initial net charge and the ionization mode are judged and curated comprehensively with
chemical sense by the initial structure and p𝐾a value. Our microstate enumerator is fully used, instead of
existing microstates given in the challenge repositories.

In the released dataset, a new standard table format is to store themicrostates after enumeration. If the structure
is represented by SMILES [55], every entry has a SMILES field A1,A2,...>>B1,B2..., where SMILES like A1
and B1 on both sides of the arrow >> respectively correspond to the structures in A and B Micro Pool after
enumeration and necessary curation. As shown in Table 2, this format naturally stores all microstates enumerated
for macro-p𝐾a data (like in the first line), and is compatible with specified microstates for micro-p𝐾a data, as same
as the case of only one microstate in both macrostates (like in the second line).

C Molecular preprocessing

If starting with SMILES like in Table 2, 2D and 3D conformers are generated from the SMILES by RDkit [54]
or OpenBabel [53] at first. The atom-type list, atomic charge list, and distance matrix are calculated and packaged
as the input of the Uni-Mol model. The workflow supported 3 sources of atomic charge:

• Formal Charge: discrete values of 0 or ±1 directly read in covalent structures. It is our default setup.
• Gasteiger Charge: continuous values calculated by empirical rules [45]. It is not supported in RDkit for
molecules containing uncommon elements like selenium and arsenic, and in these cases, the formal charge
is used instead.

• xtb-GFN2 Charge: continuous values obtained after quantum chemistry geometry optimization and single
point energy calculations. xtb-GFN2 [46], as our first choice of quantum chemistry in the workflow, is
a semi-empirical tight-binding DFT supporting a wide range of molecular systems with satisfying speed,
stability, and usability. Partial charges from other quantum chemistry program packages and levels of theory
are also supported if needed and available.

For the special atom-type word like [CLS] dressed at the tail of the list, the corresponding continuous charge is set
to zero.
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Table 9: Uni-p𝐾a hyperparameters setup during pretraining

Hyperparameter Pretraining

Layers 15
Peak learning rate 1e-4
Batch size 128
Max training epoches 100
Warmup ratio 0.06
Attention heads 64
FFN dropout 0.1
Attention dropout 0.1
Embedding dropout 0.1
Weight decay 1e-4
Embedding dim 512
FFN hidden dim 2048
Gaussian kernel channels 128
Corrupt ratio 0.15
Activation function GELU
Learning rate decay Linear
Adams 𝜖 1e-6
Adams (𝛽1, 𝛽2) (0.9, 0.99)
Gradient clip norm 1.0
p𝐾a loss function and its weight MSE, 1.0
Atom loss function and its weight Cross entropy, 1.0
Charge loss function and its weight Cross entropy, 1.0
Coordinate loss function and its weight Smooth L1, 2.0
Distance loss function and its weight Smooth L1, 1.0
Vocabulary size (atom types) 30
Vocabulary size (charge types) 7
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Table 10: Search space for finetuning

Hyperparameter Finetuning

Learning rate [3e-4, 1e-4, 5e-5]
Batch size [16, 32, 64, 128]
Epochs [20 40 60 80]
Pooler dropout 0.1
Warmup ratio 0.06

D Experiments details & reproduce

D.1 Pretraining setup

We report the detailed hyperparameters setup of Uni-p𝐾a during pretraining in Table D. Uni-p𝐾a pretraining
loss is summed up by five components, p𝐾a loss, atom (token) loss, charge loss, coordinate loss, and pair-distance
loss. For p𝐾a, Uni-p𝐾a predict it through the molecular [CLS] token. Atoms and charges are masked, and noise
is added to coordinate as described in Sec. 4.3. Predicting p𝐾a of the whole data points is not an easy task in
the presence of masking and adding noise within the data points, where molecular information is incomplete.
Compared the molecular pretraining in Uni-Mol, we reduce the multiples of coordinate loss and distance loss. At
the same time, in order to make them have a similar influence, we appropriately enlarge the coordinate loss. For the
sake of training stability, we also retain the norm loss in Uni-Mol with a very small weight of 0.01, which will not
affect the model results. The pretraining runs on 8 V100 GPUs (32GB memory, the same below), and the training
time is about 1 day and 22 hours.

D.2 Finetuning setup

Data split In our experiments, referring to previous work [15, 17, 18], we use use a 5-fold cross-validation
splitting to divide the dataset into training and validation. In all experiments, we select the checkpoint with the
best validation metric for each fold separately and report the average metric across 5 folds.

Hyperparameter search space Referring to previous works, we use a grid search to find the best combination
of hyperparameters in finetuning. The specific search space is shown in Table 10. And we run finetuning on a
single V100 GPU.

D.3 Inference setup

As mentioned in Sec. 4.4, we generate multiple conformations for a molecule to enhances both performance
and robustness of the model. During the inference stage, in the p𝐾a prediction task, the free energy predicted for
different conformations of the same molecule under the same model is averaged. Then, the FE2p𝐾a module is
used to predict the p𝐾a. We average the p𝐾a results predicted by the finetuned 5-fold models as the final prediction
result.

In the case of distribution fraction prediction, since only the free energy predicted by the model is needed, we
directly average the free energy predicted by the 5-fold models as the final free energy result.
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E Ablation Experiments

Table 11: RMSE on experimental datasets with different settings

Settings Datasets

Charge Microstate Pretraining Label Dwar-iBonda
Novartis SAMPL

Acid Base 6 7 8

Formalb Fullc ChemBLd Translatede 0.883 1.061 0.653 0.716 0.735 0.878

Nonef Full ChemBL Translated 0.941 1.115 0.696 0.897 0.651 0.849
Formal Singleg ChemBL Translated 0.925 1.234 0.749 0.845 0.678 0.927
Formal Full Uni-Molh Translated 0.910 1.373 0.845 0.845 0.818 0.927
Formal Full Nonei Translated 1.151 1.702 1.431 1.157 1.867 1.159
Formal Full ChemBL Originalj 0.980 1.022 0.670 0.911 0.557 0.860

a 5-fold cross validation
bThe same as FC in Table 4 and 5
cUsing all microstates provided by our Dwar-iBond dataset in the finetuning stage.
dFollowing the pretraining strategy in the main text.
eThe p𝐾a label is preprocessed by a translation of average of the dataset in the pretraining and finetuning stage.
fWithout Charge Repr. in Figure 3 in pretraining, finetuning and inference stages.
gUsing only one microstate picked with chemical knowledge in the finetuning stage.
hFinetuned upon the pretrained model released by Uni-Mol [36].
iWithout the pretraining stage.
jThe p𝐾a label is not preprocessed in pretraining and finetuning stage.
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