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A B S T R A C T

Background and objective: Recurrent event data analysis is most commonly used in biomedical research.
However, the researchers dealing with recurrent events in survival analysis have ignored the assumption that the
recurrent events are correlated. There are methods available that takes into account dependency between re-
current events. The main objective of this study was to demonstrate the recurrent event models using upper
respiratory infection (URI) among Indian infants.
Methods: The frequency of URI among a birth cohort of 210 babies was evaluated monthly with nasopharyngeal
swabbing. Data on 11 potential risk factors were noted. The extended Cox models, such as Andersen-Gill
counting process (CP), Prentice-Williams-Peterson (PWP-CP), PWP–Gap time model, Marginal Model and Cox
frailty model were applied. The better model was assessed based on Loglikehood test statistics.
Results: Of the four models, PWP-CP model had lower log likelihood value. The URI incidence rate was estimated
to be 2.27 (95%CI: 1.70–3.03)times significantly higher in the month of July–October and 1.43 (95%CI:
1.19–1.71) times higher in the month of November–February as compared to March–June (p < 0.001).
Nasopharyngeal colonization with S. pneumoniae was also another important risk factor (HR=1.18,
95%CI:1.01–1.39, p=0.03).
Conclusion: In the current study, PWP-CP model was found to be better model as compared to other models. Also
biologically appropriate as subsequent events depend on the first event of URI. Hence, the choice of an ap-
propriate method for analyzing the recurrent event data should not be decided only on statistical basis but also
based on the research question.

1. Introduction

Cox Proportional Hazard Model has been widely used by most re-
searchers in the recent past due to its versatility and simplicity in nature
for interpreting the results. This model is used in recurrent events such
as repeated asthma attacks, episodes of upper respiratory infections,
repeated myocardial infarctions, recurrent urinary tract infection
among the renal transplant patients, etc. are very common in medical
research. However, the researchers dealing with recurrent events in
survival analysis have ignored the assumption that the recurrent events
are correlated.1–3 In such situation either they have used the latest
event and the time related to that event as outcome or, they have as-
sumed the recurrent events are independent and analysed data using

survival analysis.4,5 If the correlations between the recurrent events are
ignored, then the null hypothesis is mostly rejected, because the Cox
model does not incorporate within subject correlation. However,
methods have been developed that make use of all available data, while
accounting for the lack of independence of recurrent events within
subjects. The two popular approaches are namely, “Variance-corrected
Cox based models” and “Frailty/random effects” models.6–8 Variance-
corrected models were developed to account for correlation by using
robust (sandwich) standard errors. However, the theory behind frailty
models is that some subjects are intrinsically more or less prone to
experience events of interest than others; frailty can be considered as a
random covariate in the model that corrects dependence among re-
current event times. Limitations of applying these variance-corrected
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models and frailty models include their complexity and difficulty in
implementation. Generalised Estimating Equation (GEE) analysis is a
variance corrected model that requires the specification of a working
correlation matrix but are still inefficient as the information on time to
event is ignored. Most statistical models have been developed for
analysing the recurrent event data which largely focused on binary
outcome having discontinuous risk intervals using GEE.7,9 Secondly,
longitudinal data are analyzed using binary logistic regression ignoring
the time, which is inappropriate. We intend to formulate a model which
will consider the actual time of recurrence of each outcome. Though
these concepts have been disseminated in statistical journals this is
seldom practised in developing countries. Hence the aim of this paper is
to summarize various methods for modelling recurrent event data. We
would also show the differences in estimation and interpretation of
recurrent event approaches, as well as to sensitize appropriate models,
based on research objectives for the longitudinal study.

2. Materials and methods

2.1. Data

This study was conducted in K.V Kuppam rural development block,
which belongs to the service area of RUHSA (Rural Unit for Health and
Social Affairs) Christian Medical College, Vellore, India between
February 2009 to August 2010. After taking an informed consent, a
detailed socio-demographic history was obtained. Patient information
was obtained from their parents who were interviewed at each visit
regarding recurrent colds, allergic symptoms, overcrowding, family
size, breast feeding, smoke exposure and day care attendance. At birth
and at monthly scheduled visits, nasopharyngeal swabbing was per-
formed with a calcium alginate swab stick. Then, the presence of upper
respiratory infection was noted.10

2.2. Standard Cox PH model

The standard Cox proportional hazard model for the survival data
specifies the hazard of ith individual as,

λi(t)= λ0(t) exp{βxi} (1)

Where (t) λ t( )0 is an unspecified baseline hazard function and β is the
vector of regression coefficients, xi is the vector of covariates of the ith

subject.

2.3. Extended Cox model

The extended Cox models were used to model recurrent time-to-
event outcomes within a subject comprehensively than the Cox model.
The extended Cox models were: 1) the Andersen-Gill counting process
(CP), 2) the Prentice-Williams-Peterson (PWP-CP/Total time),3) PWP –
Gap time (PWP-GT) model, 4) Marginal (Wei, Lin and Weissfeld)Model
and 5) Cox frailty model.

2.4. Andersen Gill model

Andersen Gill model assumes that the correlation between event
times for a subject can be explained by the past events. AG model is
suitable model when correlations among events for each individual are
induced by measured covariates. The counting process style of data
input is seen in AG model where each subject is represented as series of
observation with recurrence time given as (t0, t1], (t1, t2] … (tm, last
follow-up time] where, each recurrent event for the ith subject is as-
sumed to follow a proportional hazard model is given as

λi(t)= λ0(t)exp{βk xi(t)} (2)

Under this model, the risk of recurrent event for a subject follows
the usual Cox PH assumption but the number of recurrence is not taken

Fig. 1. Upper respiratory infection recurrent time to event data of birth cohort in the first year of life.
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into account. Every subject risk intervals contribute to the risk set for
every event, irrespective of the number of events for each individual
(Fig. 1b).11

2.5. Prentice, William and Peterson model (PWP)

Another model for analyzing recurrent events is PWP model.12 PWP
CP model (total time) and PWP Gap time model. PWP CP model is si-
milar to the AG-CP model but stratified by events. The baseline hazards
vary from event to event, the hazard function for the kth event for the ith

subject with the PH form is written as

λik(t) = λ0(t)exp{βk xi(t)} (3)

The PWP - GT model describes an intensity process from the oc-
currence of an immediately preceding event, with the gap time defined
as ( − −t tk 1). Both PWP approaches are conditional models as an in-
dividual is not considered in the riskset for the kth event until experi-
encing the (k−1)th event.

λik(t) = λ0(t-tk-1)exp{βk xi(t)} (4)

λ0k(t) represents the event-specific baseline hazard for the kth event
over time. AG model and both PWP Models are adjusted by estimating
the sandwich type estimators and hence they are known as variance
corrected models13,14(Fig. 1d).

2.6. Marginal (Wei, Lin and Weissfeld) model

Wei, Lin and Weissfeld (1989) proposed a Cox-type model to ana-
lyse repeated events data.15 In most applications the analysis has been
the “time from the study entry” scale, since all the time intervals start at
zero16 (Fig. 1c). The hazard function for the kth event for the ith in-
dividual is,

λik(t) = λ0(t)exp{βk xi(t)} (5)

Unlike the AG model, this model allows a separate underlying ha-
zard for each event. When an event is zero, it means that subject is no
longer at risk after the last given event.17,18

2.7. Cox frailty model

The frailty model is an extension of the Cox PH model, in which, the
hazard function depends on an unmeasured random variable.18,19 The
term ‘frailty’ means that each subject has his/her own disposition to
failure, in additional to any effects that will be quantified using re-
gression. Hazard function λij(t) for the recurrent time of the kth event in
the ith subject (j = 1,2,…ki; i= 1,2,…n) conditional on the frailty Zi,
follows the PH form and its given by:

= >λ t λ t Z x t β( ) ( ) {exp{ ( ) }, t 0ik k i i k0 (6)

Where, λ0k(t) is the common baseline hazard function, Xi is a vector of
observable covariates and β is a vector of unknown regression coeffi-
cients. Frailty Zi is the unobserved (random) common risk factors
shared by all subjects in cluster ‘i’ and is assumed to be i.i.d random
variable with unit mean and unknown variance θ.19,20 The Frailty ef-
fects occur when the observed sources of variation in the observed or
unobserved explanatory variables fail to account for the true difference
in risk. That is, when there are other important but omitted variables
presented, the effect of omitted variable can be captured by frailty.

3. Results

Number of recurrence experienced by infants ranged between zero
to ten during the follow-up period. Seventeen infants (8.1%) out of 210
infants did not return to the study area after birth. The upper re-
spiratory infection recurred at least once in 193 subjects and highest
recurrence events (9 and 10 times) were observed in 7 patients.

Table 1 shows a summary of follow-up times and number of patients
with and without URI event for the consecutive recurrent events. The
median follow-up time to the first URI event were 98 days and starts
increasing for the higher consecutive recurrent event.

A total of 163 infants (77.6%) had 6–13 visits where as 30 infants
(14.3%) made< 5 visits. The median number of visits for these 193
infants was 9 visits. In thousand days of life, 845 records from 747
upper respiratory patients were followed–up during the study period
and three infants died during the period of the study. The socio-de-
mographic data were obtained at birth and child characteristics were
presented in Table 2a and Table 2b. More parents resided in tiled/pucca
houses than thatched houses (66.7%), and were labourers/unemployed.
The majority of parents (61.9%) had at least high school education
(84.8% fathers and 86.7% mothers). Majority of household had

Table 1
Summary of time between consecutive URI recurrent Events.

Follow-up time (in days) No of patient with URI

Min Max Median Event Censored Total

1st recurrence 2 339 98 185 18 203
2nd recurrence 49 382 197 162 13 175
3rd recurrence 77 393 243 135 12 147
4th recurrence 105 405 276 102 19 121
5th recurrence 152 424 311 69 18 87
6th recurrence 175 398 321 44 9 53
7th recurrence 203 386 338 32 2 34
8th recurrence 231 384 336 11 5 16
9th recurrence 287 363 347 6 1 7
10th recurrence 315 377 346 1 1 2

Table 2a
Socio demographic and baseline characteristics.

Variables Baseline (n= 210)

n%

Sex
Male 121 (57.6)
Female 89 (42.4)

Type of House
Thatched 70 (33.3)
Tiled/Terraced/Group House 140 (66.7)

Parental Occupation
Nil/Laborer 130 (61.9)
Petty Business/Professional/Others 80 (38.1)

Father's Education
Illiterate/Primary 32 (15.2)
High/Higher Secondary and above 178 (84.8)

Mother's Education
Illiterate/Primary 28 (13.3)
High/Higher Secondary and above 182 (86.7)

Birth weight (Grams)
≤ 2500 76 (36.2)
> 2500 134 (63.8)

Smoke
Yes 15 (7.1)
No 195 (92.9)

No. of members in the house
≤4 48 (23.1)
> 4 160 (76.9)

Firev
Yes 85 (40.5)
No 125 (59.5)

Water
Bore well 124 (59.0)
River/Open Well 86 (41.0)

Nasophryngeal Swab Report
Positive 8 (3.8)
Negative 201 (96.2)
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(98.1%) < 3 under-five children, 76.9% of the households had more
than 4 family members.

Fig. 1a: We have considered 10 children to demonstrate the risk
intervals using URI data. Among those 10 children, seven had at least
three events. Remaining three of the children was censored at 365 days;
Subject 4 and 6 had largest number of events (6 events). Subject 3 had
only two event at times 154 and 336 days.

Variance corrected models and Frailty model results are presented
in Table 3, the ‘seasonal’ variable was the only consistently significant
risk factor for an URI. Cox PH model had lower log-likelihood values.
However, these lower likelihood values do not represent ‘good fit’ be-
cause it does not consider the subsequent events within each child.

3.1. Variance corrected model comparison

Children were most predisposed to upper respiratory infection in
the July–October months and November–February months, which is
statistically significant with slight differences in their parameter esti-
mates in all the models. Using AG model, the upper respiratory infec-
tion was estimated to be 2.27 (95%CI: 1.70–3.03) significantly higher
in July–October months and 1.43 (95%CI: 1.19–1.71) in
November–February months as compared to March–June Months
(p < 0.001). The PWP gap time model showed HR of 2.22 (95%CI:
1.66–3.00) for the July–October months and 1.37 (95%CI: 1.11–1.69)
for November–February months respectively compared to March–June
Months, which is statistically significant (p < 0.01). The WLW model
for total time up to the 10th URI recurrence since the study entry
yielded a HR of 1.58 (95%CI: 1.05–2.37, P value=0.027) in

July–October months and 2.50 (95%CI: 1.87–3.32) in
November–February months as compared to March–June Months
(p < 0.001). Nasopharyngeal colonization with S. pneumoniae was
another important risk factor which was significant in all recurrent
event models except PWP Gap time model. (AG model: HR=1.23, 95%
CI= 1.07–1.42, p value=0.003; PWP total time model: HR=1.18,
95% CI: 1.01–1.39, p value=0.03; Marginal model: HR=1.49, 95%
CI: 1.14–1.95, p value= 0.003). Birth weight of an infant< 2.5 kgs had
a risk of 1.14 (95% CI: 1.04–1.27) times of URI infection as compared to
normal birth weight infant (Table 3).

3.2. AG model and frailty model comparison

The parameter estimates obtained from the frailty model with
counting process time scale and AG models were almost same without
frailty term. In other words, when the frailty model, with a variance
almost close to zero (θ=0) would indicate that the frailty component
does not contribute to the model. Based on the AG model, children with
nasopharyngeal colonization with S. pneumoniae positive had high risk
of recurring URI, which was 23% higher as compared to children
without nasopharyngeal colonization by S. pneumoniae.Children were
most susceptible to URI in July–October months (HR: 1.43, 95%CI:
1.70–3.03) and November–February months (HR: 2.27, 95%CI:
1.19–1.71) as compared to March–June months, which is statistically
significant (p < 0.001). The cumulative hazard plot in Fig. 2a showed
that both AG model and frailty model have estimated same cumulative
hazard in the study and it clearly showed that if frailty variance is not
significant. The frailty variance θ was estimated to be 0 and 0.153 for

Table 2b
Socio Demographic and baseline characteristics by URI recurrent events.

Variable Event 1 Event 2 Event 3 Event 4 Event 5

n (%) n (%) n (%) n (%) n (%)

Sex
Female 85 (41.9) 73 (41.7) 62 (42.2) 50 (41.3) 93 (46.7)
Male 118 (58.1) 102 (58.3) 85 (57.8) 71 (58.7) 106 (53.3)
Type of house
Tiled/Terraced/Grouped Houses 136 (67.0) 120 (68.6) 104 (70.7) 82 (67.8) 134 (67.3)
Thatched 67 (33.0) 55 (31.4) 43 (29.3) 39 (32.2) 65 (32.7)
Occupation
Farmer/Bigbusiness/Petty business 75 (36.9) 63 (36.0) 52 (35.4) 39 (32.2) 54 (27.1)
Nil/Labourer 128 (63.1) 112 (64.0) 95 (64.6) 82 (67.8) 145 (72.9)
Father Education
High school/Secondary and above 173 (85.2) 150 (85.7) 126 (85.7) 102 (84.3) 164 (82.4)
Illiterate/Primary 30 (14.8) 25 (14.3) 21 (14.3) 19 (15.7) 35 (17.6)
Mother Education
High school/Secondary and above 186 (91.6) 161 (92.0) 135 (91.8) 111 (91.7) 180 (90.5)
Illiterate/Primary 17 (8.4) 14 (8.0) 12 (8.2) 10 (8.3) 19 (9.5)
Birth weight
>2.5 kg 130 (64.0) 109 (62.3) 90 (61.2) 71 (58.7) 116 (58.3)
≤2.5 kg 73 (36.0) 66 (37.7) 57 (38.8) 50 (41.3) 83 (41.7)
Smoking
No 189 (93.1) 163 (93.1) 138 (93.9) 112 (92.6) 180 (90.5)
Yes 14 (6.9) 12 (6.9) 9 (6.1) 9 (7.4) 19 (9.5)
Mem5
≤4 188 (93.5) 173 (98.9) 145 (98.6) 120 (99.2) 196 (98.5)
> 4 13 (6.5) 2 (1.1) 2 (1.4) 1 (0.8) 3 (1.5)
Fire
No 123 (60.6) 107 (61.1) 91 (61.9) 75 (62.0) 101 (50.8)
Yes 80 (39.4) 68 (38.9) 56 (38.1) 46 (38.0) 98 (49.2)
Water
Bore well 121 (59.6) 106 (60.6) 95 (64.6) 78 (64.5) 123 (61.8)
Open well/River 82 (40.4) 69 (39.4) 52 (35.4) 43 (35.5) 76 (38.2)
Swab
Negative 139 (68.8) 102 (58.3) 80 (54.4) 83 (68.6) 166 (83.4)
Positive 63 (31.2) 73 (41.7) 67 (45.6) 38 (31.4) 33 (16.6)
Season(Months)
March to June 24 (11.8) 28 (16.0) 42 (28.6) 56 (46.3) 128 (64.3)
July to October 118 (58.1) 56 (32.0) 23 (15.6) 8 (6.6) 21 (10.6)
November to February 61 (30.0) 91 (52.0) 82 (55.8) 57 (47.1) 50 (25.1)
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counting process time scale and gap respectively. Fig. 2b shows that
both models have the different estimated cumulative hazard over a
time. Recurrent event data structure and how to organize the data for
each recurrent event models, R code is given in the Appendix.

4. Discussion

Upper respiratory infections are the most common cause of mor-
bidity in the first year of life among the Indian infants. We described the
relevant methods, its importance, how to fit and interpret the results for
different methods. Cox PH model does not examine the effect of the risk
factors on the number of recurrence over the follow up time.21,22 Many
researchers continuously used logistic regression, GEE, Poisson and
negative binomial approaches for estimating the risk factors for re-
current events.7,21 However, they considered the total number of events
per fixed period of time interval, ignoring the actual time to event
concept between repeated occurrences.10,21 Observations from the
same child are expected to be correlated and hence Cox PH model is not
suitable method to account of the extra variability of the recurrent
event data. So, variance corrected models and frailty model were used.

Several methods have been proposed to account for intra-individual
correlation that rises from recurrent events setting in survival analysis.
The biological reason for the infection/disease is essential when se-
lecting a model for the recurrent events for example if it is possible that
after experiencing the first URI infection, the risk to the next infections
may increase. If AG model is reasonable to assume that the risk of the
repeated infections remains constant, irrespective of the number of
previous infections, then the AG model is recommended.18 AG Model
provides more powerful inference for a covariate effect than the Cox
model. A robust sandwich estimate is used to evaluate the standard
errors.11

The PWP models are reasonable to assume that the child can only be
at risk for a given event after he/she experiences the previous event.
The PWP model means that the underlying hazard function is assumed
to be the same from event to event. Also that, when infections increase
with subsequent recurrence, the PWP model may be more appropriate
than the AG model.

The WLW model overestimates the covariate effects due to the fact
that every child has as many records as the maximum number of the
event occurred in our data.10 The variance corrected models handle
correlation between the recurrent events occurring in the same patient
by only correcting for the variance.23,24

Random effect/Frailty models leads to a person specific inter-
pretation of the estimates which is similar to that of mixed models in
longitudinal data in order to account for the dependency between the
recurrent event and unobserved heterogeneity among patients properly
as this cannot be explained by covariates alone.25 Frailty model gives
consistent estimates based on the distribution of the number of events

and sample size. A small frailty variance implies very low correlation
between the event times.26 Frailty model is mainly applied for a mod-
erate to large number of events but even for a small number of events, it
is quite adequate.18,27 In this study the within subject correlation is very
low (0.07). However, this need not necessarily be the case always, when
dealing with data. Therefore use of the entire model is based on the
concept of the problems.

There is strong evidence in the literature that if frailty is present but
ignored, then the covariate effects will be underestimated.28,29 If the
common baseline hazard between each event time is not appropriate for
repeated event data and also, when a robust variance to any of these
models does not adequately account for within-subject correlation, then
it has been suggested to apply the frailty model which is also a similar
finding from the present study.23 However, if the primary interest of
investigation is a measurement of dependence of within subject, then
the frailty model is more adequate.30 The difference between WLW
model and frailty models is driven from the fact that, the frailty model
is more naturally related to the fundamental performance of re-
currences, while the unconditional WLW model does not provide un-
derstanding of the interrelationship among recurrences. However, it has
been suggested that, if the frailty distribution is correctly defined, then
the frailty model is expected to be more efficient than the WLW
model.31

In summary, the choice of appropriate model for analyzing re-
current event data will be influenced by many factors, such as number
of events, relationship among subsequence events, within subject cor-
relation and varying covariates and the sample size. AG model is ap-
propriate, when the assumption of a common underlying hazard over
recurrent event observation is reasonable and when only interested in
the overall rate of recurrences. When the dependence from the past
event is strong and consistent, then the PWP model is appropriate.
However, when the distribution of event per subject is small or pre-
diction of time to the next event is of interest, the PWP gap time model
is the appropriate method. However, for the present study, each episode
of URI within a child is biologically related though the estimated cor-
relation was very small. This was because the risk of infection to the
same sero group/sero type was less in subsequent events within a child;
thereby the estimated correlation coefficient was close to 0. However, if
the researcher was interested to study the measurement of the depen-
dence between recurrent event times within the subject, the frailty
model would be appropriate.

5. Conclusion

The present study finding suggests that the choice of an appropriate
method for analyzing the recurrent event data should not mainly de-
pend on statistical basis such as model with low likelihood values; ra-
ther the selection should also be based on the research question, a

Fig. 2. Cumulative hazard plot for upper respiratory infection recurrence over a time of follow-up for AG model and frailty models.
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thorough clinical knowledge on the events of interest followed by or-
ganization of the data. Thus the PWP-CP model fit the data appro-
priately while the biological process also suggested the same model.

Conflicts of interest
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Appendix. Data structures for modelling recurrent event data

Organisation of the dataset is a more complication than the usual discontinuous risk intervals. Each subject is represented by several rows of data
dependent on number of events child had, with time organized as intervals that represent (entry time, 1st event], (1st event, 2nd event],……, (kth

event, end time]. A key difference for fitting recurrent event models is the creation of appropriate datasets. To show up the important features of data
structure we present some information about the datasets that we used in the present paper.

Let's consider the example of first five children details from the Upper Respiratory Infection data are presented below:

Study ID Start Stop URI Status Gap Sex Swab Months URI count

1 0 226 1 226 1 0 3 1
1 226 282 1 56 1 0 3 2
1 282 310 1 28 1 1 3 3
1 310 338 0 28 1 0 1 4
2 0 84 1 84 1 0 1 1
2 84 127 1 43 1 0 2 2
2 127 147 1 20 1 0 2 3
2 147 168 1 21 1 0 2 4
2 168 322 1 154 1 0 3 5
3 0 132 1 132 2 1 1 1
3 132 202 1 70 2 1 2 2
3 202 230 1 28 2 1 2 3
3 230 300 1 70 2 0 3 4
3 300 328 1 28 2 0 3 5
3 328 356 1 28 2 1 3 5
4 0 154 1 154 1 0 1 1
4 154 336 1 182 1 0 3 2
5 0 35 1 35 1 0 1 1
5 35 276 1 241 1 0 3 2
5 276 302 1 26 1 0 3 3
5 302 344 1 42 1 1 3 4

A pair of variable (start, stop) is used to define the time interval of the URI. The start time is generally equal to 0 for the 1st URI and equals to the
last recurrence time for further URI. The stop time is a recurrent URI time (URI status= 1) or censored time (URI-status=0). The study ID variable
identifies the child's. 1st child study ID=1 from 226 to 282, 310 and 338 – with start time equal to 0 and stop time equal to follow up time, while
child have four rows (study ID= 1 and 5). Child with no censoring in the end of the follow-up but the child five have 3 event and end of the visit he/
she became censoring. Child study ID 4 had an event time at 154 days and second event time at 336 days. For five child data corresponding
covariates are presented in the following column in the above table. This structure of the data can used to fit AG model and Frailty Model. In the PWP
total time model, Gap time model addition information we added as URI counts based on the number of URI occurrence in the study duration, which
is going to be used for stratification. The PWP Gap time model and frailty gap time model the time is defined as stop minus start time and the data
structure as same.

Marginal approach focuses on total survival time from study entry until the occurrence of a specific (e.g., Kth) event. Suggested when recurrent
events are viewed to be of different types also. Each subject is considered to be at risk for all failures that might occur, regardless of no: of events a
subject actually experienced. For example in our study, every child to be at risk as the maximum number of recurrent events occurred in the study
(k= 10) event if a child has one recurrence. i.e, every child has 10 observations, one in each stratum. In this data the URI event indicator, which is
going to be used for stratification. Strata will correspond to the number of URI. Risk set determined from time since study entry. Marginal model is
stratified model. The below data structure can be used to fit the marginal models.

Study ID Start Stop URI Status Sex Swab Months URI count

1 0 226 1 1 0 3 1
1 0 282 1 1 0 3 2
1 0 310 1 1 1 3 3
1 0 338 0 1 0 1 4
1 0 338 1 1 0 1 5
1 0 338 1 1 0 1 6
1 0 338 1 1 0 1 7
1 0 338 1 1 0 1 8
1 0 338 1 1 0 1 9
1 0 338 1 1 0 1 10

R Code for the entire Model:
The library survival in R allows all recurrent event models, which is discussed in this paper.

library (survival)
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library (foreign)
uri < -read.spss ("file location", use.value.labels = TRUE, to.data.frame = FALSE)

AG Model:

AG_Model < -coxph (Surv (Start, Stop,URI_status)∼Mon_R + Sex_r + Swap_r.
+smk_r + water_r + fire_r + bwt_r + Pocc_r2+Toh_r + cluster (StudyID), data = uri)
summary (AG_Model)

Stratification Models: For the below models are stratified Models, the argument strata (URI_Count) identifies stratification variable to obtain
their estimates. Estimates are obtained for event-specific effects for each covariates.

1. PWP-Total time Model:

PWP_TT < -coxph (Surv (Start, Stop,URI_status)∼Mon_R + Sex_r + Swap_r.
+smk_r + water_r + fire_r + bwt_r + Pocc_r2+Toh_r + cluster (StudyID)+Strata (URI_Count),data = uri)
summary (PWP_TT)

2. PWP-Gap time Model:

PWP_GT < -coxph (Surv (Stop-Start,URI_status)∼Mon_R + Sex_r+
Swap_r + smk_r + water_r + fire_r + bwt_r + Pocc_r2+Toh_r + cluster.
(StudyID)+Strata (URI_Count),data = uri)
summary (PWP_GT)

3. Marginal Model:

Marginal < -coxph (Surv (Start, Stop,URI_status)∼Mon_R + Sex_r+
Swap_r + smk_r + water_r + fire_r + bwt_r + Pocc_r2+Toh_r + cluster (StudyID)+Strata (URI_Count),data = uri)
Summary (Marginal)

Frailty Model: By default gamma distribution is associated to the random effect for the frailty model in R software. However, we can specify the
distributions such as gamma and Gaussian. Other way frailty.gamma (Study_ID) and frailty.gaussian (Study_ID) instead of frailty (id,-
dist = ”gamma”)

Frailty < -coxph (Surv (Start, Stop,URI_status)∼Mon_R + Sex_r + Swap_r.
+mem5_r + smk_r + water_r + fire_r + Fathedu_r + MothEdu_r + bwt_r + Pocc_r2+Toh_r + frailty (StudyID, dist = "gamma"),
data = uri)
summary (Frailty)
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