Radiation-Matter Interaction II

Dott. Michele Pinamonti Prof. Marina Cobal 以上の主要的意志大学

reduces the mean energy of a beam of electrons by a factor 1/e (for only radiative losses)

• If the material thickness is given in terms of X_0 : $X' = X/X_0$

$$-\frac{dE}{dX'} \approx E_0 \longrightarrow$$

Independent from the material

Energy loss via radiation

hic sunt futura

Ionization & Bremsstrahlung

- → dE/dx goes with log(E) and is proportional to Z
- Dominant at energies
 smaller than the critical
 one
- → Energy is released to the material

- → dE/dx is proportional to E e to Z²
- → Dominant at energies > Ec
- → Energy is given to the photons

Cherenkov Detector

<u>Threshold Č</u>

Threshold velocity: v > c/n

Discriminates *relativistic* particles with *same momentum* and *different mass*

Differential Č

Radiation is emitted at a given an $\cos \theta_c = 1/\beta_n$

By *measuring* θ_c :

- get momentum by assuming mass
- get mass (particle id.) by knowing

Stop Point of Charge Part

mor

Transition Radiation

Radiation emitted when a charged particle crosses the *boundary* between two materials with a different index of refraction

- The particle forms an electric dipole with its image (depending on time) and produces electromagnetic radiation
- The **energy loss is small**: nr. of photons emitted per separating surface N γ ~ 1/137
- Irradiated energy I ~ γ: identification of particles with a high γ (electrons)
- Angle of emission: $\theta \sim 1/\gamma$

Multiple Coulomb Scattering

Multiple Coulomb Scattering

For a relativistic particle $\beta \sim 1$ with z = 1in a magnetic field B = 1.5 T which travels X = 1 m in iron ($X_0 = 0.02$ m) one has: pc [Mev] = 300 BR $\theta = X / R = 300 BX / pc$ Uncertainty due to multiple scattering: $\theta^{\rm RMS}$ / θ ~ (111) Precision Limit to precision of particle direction measurement!

Photon – matter interaction

- They have to be converted into charged particles to be seen
- More *penetrating* than charged particles
- Three main effects:

UNIVERSITA

DEGLI ST DI UDINE hic sunt futura

- D Photoelectric
- □ Compton
- D Pairs production

When a photon beam crosses a material it is degraded in *intensity*, not in energy

Where x is the material thickness and μ is the absorption

Photoelectric Effect

Photons, colliding with atoms, transfer to the peripheral photons an energy which can allow their emission \bullet It is an over-threshold of $E\gamma >$

- The atom remains in an **Excited state** and decays emitting fluorescence other electrons
- The e⁻ direction is random with to the direction of the incident photon

• The **nr.** of emitted e⁻ depends on the **intensity** of the beam

• The e⁻ energy depends in the beam energy: $T_e = hv - E_{bound}$

Photoelectric Effect

Process cross section $\sigma \div Z^{4-5} / E_{\gamma}^{7/2}$ (for E γ > shell k)

It depends mainly on atomic number Z of the target material and on photon energy

Cross section goes down when energy grows and when Z grows

Peaks correspond to atomic orbitals

Compton Effect

Scattering of a photon on a free e⁻

Applying energy & momentum conservation:

- Energy of scattered γ : $h\nu' = h\nu / (1 + \gamma (1 \cos \theta))$, $\gamma = h\nu / m_e^2$
- Direction of scattered γ : $\cos \theta = 1 2 / ((1 + \gamma)^2 tg^2 \varphi + 1)_{dentered}$ Direction of scattered e⁻¹ cost = (1 + 1)

Absorption coefficient:

$$\mu c = n_e \sigma_c = \frac{NaZ}{A} \rho \sigma_c$$

Only part of the energy of the photon gets transferred to the electron

ast electron

Scattered photon

 $\gamma e \rightarrow \gamma e^{-}$

Compton Effect

The process cross section is given by the Klein-Nishina formula:

$$d\sigma / d\Omega = (r_e^2 / 2) * (1 / [1 + \gamma (1 - \cos \varphi)]^2) * [1 + \cos^2 \varphi + \gamma^2 (1 - \cos \varphi)^2 / (1 + \gamma (1 - \cos \varphi))]$$

Integrating, one gets a cross section which is proportional to Z/E

 $\sigma \div Z/E$

Total Cross section vs energy

 $\gamma N \rightarrow N e^- e^+$

Transformation of a photon in a pair e⁺e

- Threshold reaction: $E_{\gamma} > 2 \text{ me}$
- Over a certain energy explains all the photons absorption
- Takes place in the presence of a nucleus for the momentum conservation, but no energy is released to the material.

Pair Production

The cross section of the process is:

- \rightarrow for high energies: $\sigma \div Z^2 \square$ independent from E
- → for low energies : $\sigma \div Z^2 \ln E$ \Box weak dependency from E

Absorbtion coefficient:

$$\mu pp = \frac{Na\rho}{A}\sigma pp = \frac{7}{9X0}$$

The pair production phenomenon is linked to bremsstrahlung emission

Intensity attenuation of a photon beam of initial intensity I₀ for pair production:

Can be started by a photon or an electron

After about (7/9) X_0 $\gamma + N \rightarrow e^+ + e^- + N$ After about one X_0 $e^{\pm} + N \rightarrow e^{\pm} + N + \gamma$

- → The number of electrons and positrons initially increase and then reaches a maximum
- → When the particle energy is reduced to E_c, starts to decrease

Pb gas

Hadronic Energy Loss

- Hadrons = particles made of quarks
 - → protons
 - → neutrons
 - → pions
 - → kaons...
- Beside EM interactions, hadrons can have strong interaction with atomic nuclei
- Typically, nucleus mass > hadron mass
 ⇒ hardon stopped
 ⇒ possible production of secondary hadrons (depending on energy)

Hadronic Energy Loss

- Interaction length λ_0 = mean distance before a neutron beam suffers attenuation 1/e
 - → weak dependence on energy
 - → typical values (for E > 100 MeV)

air $\lambda_0 \approx 750 \text{ m}$ H₂O $\lambda_0 \approx 0.85 \text{ m}$ C $\lambda_0 \approx 0.38 \text{ m}$ Fe $\lambda_0 \approx 0.7 \text{ m}$ Pb $\lambda_0 \approx 0.17 \text{ m}$

Summary

- Bremsstrahlung (negligible for heavy charged particles)
 Multiple Coulomb scattering
 Cherenkov emission
 - Transition radiation

 (important for electrons)

- Photons Compton effect
 - Pair production
 - Interaction with nuclei
- Hadrons
- + same as charged particles if charge

