CHAPTER 5

Jointly Distributed Random Variables

Joint Probability Mass Function

Let *X* and *Y* be two discrete rv's defined on the sample space of an experiment. The *joint probability mass function* p(x, y) is defined for each pair of numbers (x, y) by

$$p(x, y) = P(X = x \text{ and } Y = y)$$

Let *A* be the set consisting of pairs of (x, y) values, then

$$P[(X,Y) \in A] = \sum_{(x,y) \in A} \sum_{(x,y) \in A} p(x,y)$$

Marginal Probability Mass Functions

The marginal probability mass functions of X and Y, denoted $p_X(x)$ and $p_Y(y)$ are given by

$$p_X(x) = \sum_{y} p(x, y) \quad p_Y(y) = \sum_{x} p(x, y)$$

- the height and weight of a person;
- the temperature and rainfall of a day;
- the two coordinates of a needle randomly dropped on a table;
- the number of 1s and the number of 6s in 10 rolls of a die.

Example. We are interested in the effect of seat belt use on saving lives. If we consider the following random variables X_1 and X_2 defined as follows:

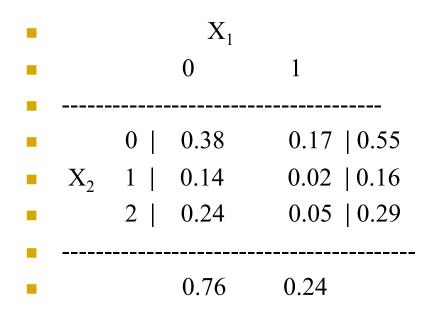
 $X_1 = 0$ if child survived

 $X_1 = 1$ if child did not survive

And $X_2 = 0$ if no belt

- $X_2 = 1$ if adult belt used
- $X_2 = 2$ if child seat used

The following table represents the *joint probability distribution* of X₁ and X₂. In general we write P(X₁ = x₁, X₂ = x₂) = p(x₁, x₂) and call p(x₁, x₂) the *joint probability function* of (X₁, X₂).



Probability that a child will both survive and be in a child seta when involved in an accident is:

•
$$P(X_1 = 0, X_2 = 2) = 0.24$$

Probability that a child will be in a child seat:

•
$$P(X_2 = 2) = P(X_1 = 0, X_2 = 2) + P(X_1 = 1, X_2 = 2) = 0.24 + 0.05 = 0.29$$

Example: 3 sox in a box (numbered 1,2,3). Draw 2 sox at random w/o replacement. X = # of first sock, Y = # of second sock. The joint pmf f(x, y) is

	X = 1	X = 2	X = 3	Pr(Y=y)
Y = 1	0	1/6	1/6	1/3
Y = 2	1/6	0	1/6	1/3
Y = 3	1/6	1/6	0	1/3
Pr(X=x)	1/3	1/3	1/3	1

Pr(X = x) is the "marginal" distribution of X. Pr(Y = y) is the "marginal" distribution of Y. By the law of total probability,

$$\Pr(X = 1) = \sum_{y=1}^{3} \Pr(X = 1, Y = y) = 1/3.$$

In addition,

$$Pr(X \ge 2, Y \ge 2)$$

= $\sum_{x \ge 2} \sum_{y \ge 2} f(x, y)$
= $f(2, 2) + f(2, 3) + f(3, 2) + f(3, 3)$
= $0 + 1/6 + 1/6 + 0 = 1/3.$

Joint Probability Density Function

Let *X* and *Y* be continuous rv's. Then f(x, y) is a *joint probability density function* for *X* and *Y* if for any two-dimensional set *A*

$$P[(X,Y) \in A] = \iint_{A} f(x,y) dx dy$$

If A is the two-dimensional rectangle $\{(x, y) : a \le x \le b, c \le y \le d\},\$ $P[(X, Y) \in A] = \iint f(x, y) dy dx$

Marginal Probability Density Functions

The marginal probability density functions of X and Y, denoted $f_X(x)$ and $f_Y(y)$, are given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad \text{for } -\infty < x < \infty$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad \text{for } -\infty < y < \infty$$

Example: A bank operates a drive-in facility and a walk-up window.

Let X = proportion of time the drive-in is used Y = proportion of time the walk-up is used

$$f_{XY}(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & \text{for } 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

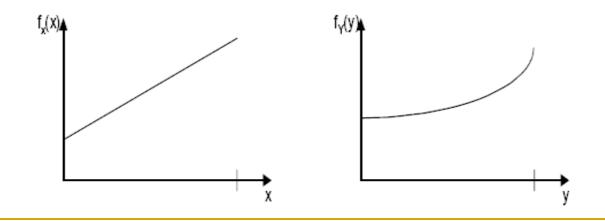
Note:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{6}{5} (x+y^2) dx dy = 1$$

Marginal density functions:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_0^1 \frac{6}{5} (x + y^2) dy$$

=
$$\begin{cases} \frac{6}{5} (x + \frac{2}{5}) & \text{for } 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx = \int_0^1 \frac{6}{5} (x + y^2) dx$$

$$= \begin{cases} \frac{6}{5}(y^2 + \frac{3}{5}) & \text{for } 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$



Independent Random Variables

Two random variables X and Y are said to be *independent* if for every pair of x and y values

$$p(x, y) = p_X(x) \cdot p_Y(y)$$

when X and Y are discrete or

$$f(x, y) = f_X(x) \cdot f_Y(y)$$

when X and Y are continuous. If the conditions are not satisfied for all (x, y) then X and Y are *dependent*.

.

Let the joint density of two random variables x_1 and x_2 be given by

$$f(x_1, x_2) = \begin{cases} 2x_2 e^{-x_1} & x_1 \ge 0, \quad 0 \le x_2 \le 1\\ 0 & \text{otherwise} \end{cases}$$

First find the marginal density for x_1 .

$$f_1(x_1) = \int_0^1 2x_2 e^{-x_1} dx_2$$
$$= x_2^2 e^{-x_1} \Big|_0^1$$
$$= e^{-x_1} - 0$$
$$= e^{-x_1}$$

Now find the marginal density for x_2 .

$$f_{2}(x_{2}) = \int_{0}^{\infty} 2x_{2} e^{-x_{1}} dx_{1}$$
$$= -2x_{2} e^{-x_{1}} \Big|_{0}^{\infty}$$
$$= 0 - (-2x_{2} e^{0})$$
$$= 2x_{2} e^{0}$$
$$= 2x_{2}$$

Conditional Probability Function

Let *X* and *Y* be two continuous rv's with joint pdf f(x, y) and marginal *X* pdf $f_X(x)$. Then for any *X* value *x* for which $f_X(x) > 0$, the conditional probability density function of *Y* given that X = x is $f_{xyy}(y|x) = \frac{f(x, y)}{x} = -\infty \le y \le \infty$

$$f_{Y|X}(y \mid x) = \frac{f(x, y)}{f_X(x)} - \infty < y < \infty$$

If *X* and *Y* are discrete, replacing pdf's by pmf's gives the *conditional probability mass function* of *Y* when X = x.

Example. Let the joint density of two random variables x and y be given by

$$f(x, y) = \begin{cases} \frac{1}{6}(x + 4y) & 0 < x < 2, \ 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

The marginal density of x is $f_X(x) = \frac{1}{6}(x+2)$ while the marginal density of y is $f_y(y) = \frac{1}{6}(2+8y)$.

Now find the conditional distribution of x given y. This is given by

$$\begin{split} f_{X|Y}(x \mid y) &= \frac{f(x, y)}{f(y)} = \frac{\frac{1}{6}(x + 4y)}{\frac{1}{6}(2 + 8y)} \\ &= \frac{(x + 4y)}{(8y + 2)} \end{split}$$

for 0 < x < 2 and 0 < y < 1. Now find the probability that $X \le 1$ given that $y = \frac{1}{2}$. First determine the density function when $y = \frac{1}{2}$ as follows

$$\frac{f(x, y)}{f(y)} = \frac{(x+4y)}{(8y+2)}$$
$$= \frac{\left(x+4\left(\frac{1}{2}\right)\right)}{\left(8\left(\frac{1}{2}\right)+2\right)}$$
$$= \frac{(x+2)}{(4+2)} = \frac{(x+2)}{6}$$

Then

$$P\left(X \le 1 \mid Y = \frac{1}{2}\right) = \int_{0}^{1} \frac{1}{6}(x+2) \, dx$$
$$= \frac{1}{6} \left(\frac{x^{2}}{2} + 2x\right) \Big|_{0}^{1}$$
$$= \frac{1}{6} \left(\frac{1}{2} + 2\right) - 0$$
$$= \frac{1}{12} + \frac{2}{6} = \frac{5}{12}$$

Let X and Y denote the proportion of two different chemicals in a sample mixture of chemicals used as an insecticide. Suppose X and Y have joint probability density given by:

$$f(x, y) = \begin{cases} 2, & 0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1 \\ 0, & elsewhere \end{cases}$$

(Note that X + Y must be at most unity since the random variables denote proportions within the same sample).

- 1) Find the marginal density functions for X and Y.
- 2) Are X and Y independent?
- 3) Find P(X > 1/2 | Y = 1/4).

$$f_{1}(x) = \begin{cases} \int_{0}^{1-x} 2dy = 2(1-x), & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases} \qquad f_{2}(y) = \begin{cases} \int_{0}^{1-y} 2dx = 2(1-y), & 0 \le y \le 1 \\ 0 & 0 & \text{otherwise} \end{cases}$$

- 2) $f_1(x) f_2(y)=2(1-x)* 2(1-y) \neq 2 = f(x,y)$, for $0 \le x \le 1-y$.
- Therefore X and Y are not independent.
- **3**)

$$P\left(X > \frac{1}{2} \mid Y = \frac{1}{4}\right) = \int_{1/2}^{1} f(x \mid y = \frac{1}{4}) dx = \int_{1/2}^{1} \frac{f(x, y = \frac{1}{4})}{f(y = \frac{1}{4})} dx = \int_{1/2}^{1} \frac{2}{2(1 - \frac{1}{4})} = \frac{2}{3}$$

5.2 Expected Values, Covariance, and Correlation

Let *X* and *Y* be jointly distributed rv's with pmf p(x, y) or pdf f(x, y) according to whether the variables are discrete or continuous. Then the *expected value* of a function h(X, Y), denoted E[h(X, Y)] or $\mu_{h(X,Y)}$

is
$$=\begin{cases} \sum_{x} \sum_{y} h(x, y) \cdot p(x, y) & \text{discrete} \\ \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) \cdot f(x, y) dx dy & \text{continuous} \end{cases}$$

Covariance

The *covariance* between two rv's X and Y is

$$\operatorname{Cov}(X,Y) = E\left[(X - \mu_X)(Y - \mu_Y)\right]$$

$$=\begin{cases}\sum_{x}\sum_{y}(x-\mu_{X})(y-\mu_{Y})p(x,y) & \text{discrete}\\ \\\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x-\mu_{X})(y-\mu_{Y})f(x,y)dxdy & \text{continuous} \end{cases}$$

Short-cut Formula for Covariance

$$\operatorname{Cov}(X,Y) = E(XY) - \mu_X \cdot \mu_Y$$

Theorem: X and Y indep implies Cov(X, Y) = 0.

Proof:

Cov(X,Y) = E[XY] - E[X]E[Y]= E[X]E[Y] - E[X]E[Y] (X, Y indep)= 0.

Cov(X, Y) = 0 does not imply X and Y are independent!!

Definition: The correlation between X and Y is

$$\rho = \operatorname{Corr}(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Remark: Cov has "square" units; corr is unitless.

Corollary: X, Y indep implies $\rho = 0$.

Correlation Proposition

- 1. If *a* and *c* are either both positive or both negative, Corr(aX + b, cY + d) = Corr(X, Y)
- 2. For any two rv's X and Y, $-1 \le \operatorname{Corr}(X, Y) \le 1.$

Correlation Proposition

1. If X and Y are independent, then $\rho = 0$, but $\rho = 0$ does not imply independence.

2.
$$\rho = 1$$
 or -1 iff $Y = aX + b$
for some numbers *a* and *b* with $a \neq 0$.

Theorem: It can be shown that $-1 \le \rho \le 1$.

- ho pprox 1 is "high" corr
- ho pprox 0 is "low" corr
- ho pprox 1 is "high" negative corr.

Example: Height is *highly* correlated with weight. Temperature on Mars has *low* corr with IBM stock price. Anti-UGA Example: Suppose X is the avg yards/carry that a UGA fullback gains, and Y is his grade on an astrophysics test. Here's the joint pmf f(x,y).

	X = 2	X = 3	X = 4	$f_Y(y)$
Y = 40	.0	.2	.1	.3
Y = 50	.15	.1	.05	.3
Y = 60	.3	.0	.1	.4
$f_X(x)$.45	.3	.25	1

$$E[X] = \sum_{x} x f_X(x) = 2.8$$

$$E[X^2] = \sum_{x} x^2 f_X(x) = 8.5$$

$$Var(X) = E[X^2] - (E[X])^2 = 0.66$$

Similarly, E[Y] = 51, $E[Y^2] = 2670$, and Var(Y) = 60.

$$E[XY] = \sum_{x} \sum_{y} xyf(x,y)$$

= 2(40)(.0) + ... + 4(60)(.1) = 140
$$Cov(X,Y) = E[XY] - E[X]E[Y] = -2.8$$

$$\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = -0.415.$$

Cts Example: Suppose $f(x, y) = 10x^2y$, $0 \le y \le x \le 1$.

$$f_X(x) = \int_0^x 10x^2 y \, dy = 5x^4, \ 0 \le x \le 1$$

$$\mathsf{E}[X] = \int_0^1 5x^5 \, dx = 5/6$$

$$\mathsf{E}[X^2] = \int_0^1 5x^6 \, dx = 5/7$$

$$Var(X) = E[X^2] - (E[X])^2 = 0.01984$$

Similarly,

$$f_Y(y) = \int_y^1 10x^2 y \, dx = \frac{10}{3}y(1-y^3), \ 0 \le y \le 1$$

E[Y] = 5/9, Var(Y) = 0.04850

$$\mathsf{E}[XY] = \int_0^1 \int_0^x 10x^3 y^2 \, dy \, dx = 10/21$$

$$\operatorname{Cov}(X,Y) = \operatorname{\mathsf{E}}[XY] - \operatorname{\mathsf{E}}[X]\operatorname{\mathsf{E}}[Y] = 0.1323$$
$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = 0.4265$$

Theorem: Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y), whether or not X and Y are indep.

Remark: If X, Y are indep, the Cov term goes away.

Proof: By the work we did on a previous proof,

$$Var(X + Y) = E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$
$$= Var(X) + Var(Y) + 2Cov(X, Y).$$

Theorem: Cov(aX, bY) = abCov(X, Y).

Proof:

 $Cov(aX, bY) = E[aX \cdot bY] - E[aX]E[bY]$

 $= ab \mathsf{E}[XY] - ab \mathsf{E}[X]\mathsf{E}[Y]$

= abCov(X,Y).

Example: Var(X-Y) = Var(X) + Var(Y) - 2Cov(X, Y).

Example:

$$Var(X - 2Y + 3Z)$$

= Var(X) + 4Var(Y) + 9Var(Z)
-4Cov(X,Y) + 6Cov(X,Z) - 12Cov(Y,Z).

The proportions X and Y of two chemicals found in samples of an insecticide have the joint probability density function

$$f(x, y) = \begin{cases} 2, & 0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1 \\ 0, & elsewhere \end{cases}$$

The random variable Z=X + Y denotes the proportion of the insecticide due to both chemicals combined.

1) Find E(Z) and V(Z)

2) Find an interval in which values of Z should lie at least 50% of the samples of insecticide.

3) Find the correlation between X and Y and interpret its meaning.

$$E(X+Y) = \int_{0}^{1} \int_{0}^{1-x} (x+y) 2dy dx = \int_{0}^{1} (1-x^2) dx = \frac{2}{3}$$

$$E[(X+Y)^{2}] = \int_{0}^{1} \int_{0}^{1-x} (x+y)^{2} 2dy \, dx = \int_{0}^{1} \frac{2}{3} (1-x)^{3} \, dx = \frac{2}{3} (x-\frac{x^{4}}{4}) \Big|_{0}^{1} = \frac{2}{3} \left(\frac{3}{4}\right) = \frac{1}{2}$$

$$V(Z) = E(Z^2) - E(Z)^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{1}$$

Using Tchebysheff's theorem with $k = \sqrt{2}$ we have,

$$P\left(\frac{2}{3} - \sqrt{\frac{2}{18}} < X + Y < \frac{2}{3} + \sqrt{\frac{2}{18}}\right) \ge 0.5$$

The desired interval is (1/3, 1).

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

$$f(X) = \int_{0}^{1-X} f(X,Y) dy = \int_{0}^{1-X} 2dY = 2(1-X), 0 \le X \le 1$$

$$f(Y) = \int_{0}^{1-Y} f(X,Y) dx = \int_{0}^{1-Y} 2dX = 2(1-Y), 0 \le Y \le 1$$

$$E(X) = E(Y) = \int_{0}^{1} z^{2}(1-z) dz = 2\int_{0}^{1} z - z^{2} dz = 2\left(\frac{z^{2}}{2} - \frac{z^{3}}{3}\right)_{0}^{1} = 2\left(\frac{1}{2} - \frac{1}{3}\right) = 2\left(\frac{1}{6}\right) = \frac{1}{3}$$

$$E(X^{2}) = E(Y^{2}) = \int_{0}^{1} z^{2}(1-z) dz = 2\int_{0}^{1} z^{2} - z^{3} dz = 2\left(\frac{z^{3}}{3} - \frac{z^{4}}{4}\right)_{0}^{1} = 2\left(\frac{1}{3} - \frac{1}{4}\right) = 2\left(\frac{1}{12}\right) = \frac{1}{6}$$

$$Var(X) = Var(Y) = E(X^{2}) - (E(X))^{2} = \frac{1}{6} - \left(\frac{1}{3}\right)^{2} = \frac{1}{6} - \frac{1}{9} = \frac{1}{18}$$

$$E(XY) = \int_{0}^{1} \int_{0}^{1-x} xy 2dx dy = \int_{0}^{1} x \int_{0}^{1-x} 2y dy dx = \int_{0}^{1} x(y^{2}) \Big|_{0}^{1-x} dx =$$

$$= \int_{0}^{1} x(1-x)^{2} dx = \int_{0}^{1} x - 2x^{2} + x^{3} dx = \left(\frac{x^{2}}{2} - \frac{2x^{3}}{3} + \frac{x^{4}}{4}\right) \Big|_{0}^{1} = \frac{1}{2} - \frac{2}{3} + \frac{1}{4} = \frac{1}{12}$$

$$\rho = \frac{\frac{1}{12} - \left(\frac{1}{3}\right)^{2}}{\sqrt{\left(\frac{1}{18}\right)^{2}}} = \frac{\frac{1}{12} - \frac{1}{9}}{\frac{1}{18}} = -\frac{1}{2}$$

A *statistic* is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Random Samples

The rv's X_1, \ldots, X_n are said to form a (simple *random sample* of size *n* if

- 1. The X_i 's are independent rv's.
- 2. Every X_i has the same probability distribution.

Simulation Experiments

The following characteristics must be specified:

- 1. The statistic of interest.
- 2. The population distribution.
- 3. The sample size *n*.
- 4. The number of replications *k*.

Using the Sample Mean

Let X_1, \ldots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then

1.
$$E\left(\overline{X}\right) = \mu_{\overline{X}} = \mu$$

2. $V\left(\overline{X}\right) = \sigma_{\overline{X}}^2 = \sigma_n^2/n$

In addition, with $T_o = X_1 + \ldots + X_n$, $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n\sigma}$.

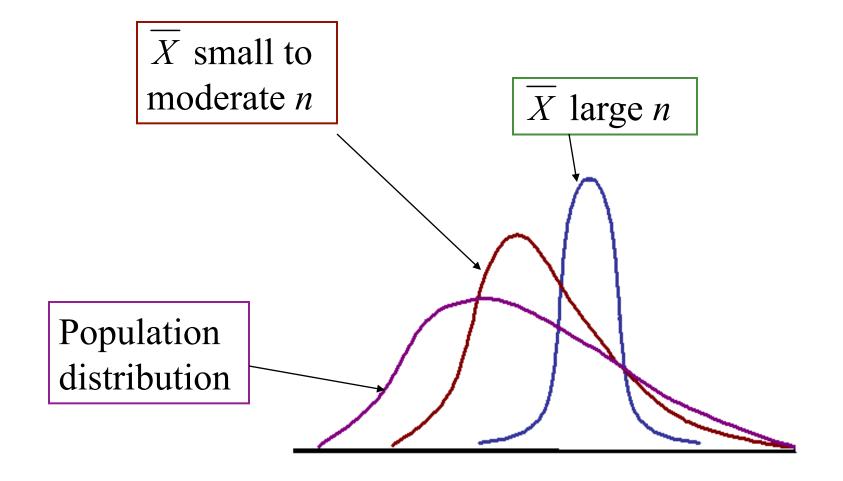
Normal Population Distribution

Let X_1, \ldots, X_n be a random sample from a normal distribution with mean value μ and standard deviation σ . Then for any n, \overline{X} is normally distributed, as is T_o .

The Central Limit Theorem

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and variance σ^2 . Then if *n* sufficiently large, \overline{X} has approximately a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}}^2 = \sigma_n^2 / n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o} = n\sigma^2$. The larger the value of *n*, the better the approximation.

The Central Limit Theorem



Rule of Thumb

If n > 30, the Central Limit Theorem can be used.

Example/Theorem: Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x)$ with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$. Define the sample mean as

$$\bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Then

$$\mathsf{E}[\bar{X}] = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{n} X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n} \mathsf{E}[X_{i}] = \frac{1}{n}\sum_{i=1}^{n} \mu = \mu.$$

So the mean of \overline{X} is the same as the mean of X_i .

Meanwhile,...

$$\begin{aligned} \operatorname{Var}(\bar{X}) &= \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \\ &= \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) \quad (X_{i}\text{'s indep}) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \sigma^{2}/n. \end{aligned}$$

So the mean of \overline{X} is the same as the mean of X_i , but the variance decreases!