CHAPTER 5

Jointly Distributed Random Variables

Joint Probability Mass Function

Let X and Y be two discrete rv's defined on the sample space of an experiment. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

Let A be the set consisting of pairs of (x, y) values, then

$$
P[(X, Y) \in A]=\sum_{(x, y) \in A} \sum_{i} p(x, y)
$$

Marginal Probability Mass Functions

The marginal probability mass functions of X and Y, denoted $p_{X}(x)$ and $p_{Y}(y)$ are given by

$$
p_{X}(x)=\sum_{y} p(x, y) \quad p_{Y}(y)=\sum_{x} p(x, y)
$$

- - the height and weight of a person;
- - the temperature and rainfall of a day;
- - the two coordinates of a needle randomly dropped on a table;
- - the number of 1 s and the number of 6 s in 10 rolls of a die.

Example. We are interested in the effect of seat belt use on saving lives. If we consider the following random variables X_{1} and X_{2} defined as follows:
$-X_{1}=0$ if child survived
$-X_{1}=1$ if child did not survive

- And $X_{2}=0$ if no belt
- $\quad \mathrm{X}_{2}=1$ if adult belt used
- $X_{2}=2$ if child seat used
- The following table represents the joint probability distribution of X_{1} and X_{2}. In general we write $P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=p\left(x_{1}, x_{2}\right)$ and call $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{X}_{2}\right)$ the joint probability function of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$.

- Probability that a child will both survive and be in a child seta when involved in an accident is:
- $\mathrm{P}\left(\mathrm{X}_{1}=0, \mathrm{X}_{2}=2\right)=0.24$
- Probability that a child will be in a child seat:
- $\mathrm{P}\left(\mathrm{X}_{2}=2\right)=\mathrm{P}\left(\mathrm{X}_{1}=0, \mathrm{X}_{2}=2\right)+\mathrm{P}\left(\mathrm{X}_{1}=1, \mathrm{X}_{2}=2\right)=$ $0.24+0.05=0.29$

Example: 3 sox in a box (numbered 1,2,3). Draw 2 sox at random w/o replacement. $X=\#$ of first sock, $Y=\#$ of second sock. The joint pmf $f(x, y)$ is

	$X=1$	$X=2$	$X=3$	$\operatorname{Pr}(Y=y)$
$Y=1$	0	$1 / 6$	$1 / 6$	$1 / 3$
$Y=2$	$1 / 6$	0	$1 / 6$	$1 / 3$
$Y=3$	$1 / 6$	$1 / 6$	0	$1 / 3$
$\operatorname{Pr}(X=x)$	$1 / 3$	$1 / 3$	$1 / 3$	1

$\operatorname{Pr}(X=x)$ is the "marginal" distribution of X.
$\operatorname{Pr}(Y=y)$ is the "marginal" distribution of Y.

By the law of total probability,

$$
\operatorname{Pr}(X=1)=\sum_{y=1}^{3} \operatorname{Pr}(X=1, Y=y)=1 / 3
$$

In addition,

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 2, Y \geq 2) \\
& \quad=\sum_{x \geq 2} \sum_{y \geq 2} f(x, y) \\
& \quad=f(2,2)+f(2,3)+f(3,2)+f(3,3) \\
& \quad=0+1 / 6+1 / 6+0=1 / 3 .
\end{aligned}
$$

Joint Probability Density Function

Let X and Y be continuous rv's. Then $f(x, y)$ is a joint probability density function for X and Y if for any two-dimensional set A

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

If A is the two-dimensional rectangle
$\{(x, y): a \leq x \leq b, c \leq y \leq d\}$,

$$
P[(X, Y) \in A]=\int_{a c}^{a} f(x, y) d y d x
$$

Marginal Probability Density Functions

The marginal probability density functions of X and Y, denoted $f_{X}(x)$ and $f_{Y}(y)$, are given by

$$
\begin{array}{ll}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & \text { for }-\infty<x<\infty \\
f_{Y}(y)=\int^{\infty} f(x, y) d x & \text { for }-\infty<y<\infty
\end{array}
$$

Example: A bank operates a drive-in facility and a walk-up window.

Let $X=$ proportion of time the drive-in is used $Y=$ proportion of time the walk-up is used
$f_{X Y}(x, y)= \begin{cases}\frac{6}{5}\left(x+y^{2}\right) & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$
Note: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{6}{5}\left(x+y^{2}\right) d x d y=1$

Marginal density functions:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{+\infty} f_{X Y}(x, y) d y=\int_{0}^{1} \frac{6}{5}\left(x+y^{2}\right) d y \\
& = \begin{cases}\frac{6}{5}\left(x+\frac{2}{5}\right) & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }\end{cases} \\
f_{Y}(y) & =\int_{-\infty}^{+\infty} f_{X Y}(x, y) d x=\int_{0}^{1} \frac{6}{5}\left(x+y^{2}\right) d x \\
& = \begin{cases}\frac{6}{5}\left(y^{2}+\frac{3}{5}\right) & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Independent Random Variables

Two random variables X and Y are said to be independent if for every pair of x and y values

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y)
$$

when X and Y are discrete or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

when X and Y are continuous. If the conditions are not satisfied for all (x, y) then X and Y are dependent.

Let the joint density of two random variables x_{1} and x_{2} be given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}2 x_{2} 2^{-x_{1}} & x_{1} \geq 0, \\ 0 & 0 \leq x_{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

First find the marginal density for x_{1}.

$$
\begin{aligned}
f_{1}\left(x_{1}\right) & =\int_{0}^{1} 2 x_{2} \mathrm{e}^{-x_{1}} d x_{2} \\
& =\left.x_{2}^{2} \mathrm{e}^{-x_{1}}\right|_{0} ^{1} \\
& =\mathrm{e}^{-x_{1}}-0 \\
& =\mathrm{e}^{-x_{1}}
\end{aligned}
$$

Now find the marginal density for x_{2}.

$$
\begin{aligned}
f_{2}\left(x_{2}\right) & =\int_{0}^{\infty} 2 x_{2} \mathrm{e}^{-x_{1}} d x_{1} \\
& =-\left.2 x_{2} \mathrm{e}^{-x_{1}}\right|_{0} ^{\infty} \\
& =0-\left(-2 x_{2} \mathrm{e}^{0}\right) \\
& =2 x_{2} e^{0} \\
& =2 x_{2}
\end{aligned}
$$

Conditional Probability Function

Let X and Y be two continuous rv's with joint pdf $f(x, y)$ and marginal $X \operatorname{pdf} f_{X}(x)$. Then for any X value x for which $f_{X}(x)>0$, the conditional probability density function of Y given that $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \quad-\infty<y<\infty
$$

If X and Y are discrete, replacing pdf's by pmf's gives the conditional probability mass function of Y when $X=x$.

Example. Let the joint density of two random variables x and y be given by

$$
f(x, y)= \begin{cases}\frac{1}{6}(x+4 y) & 0<x<2,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

The marginal density of x is $f_{X}(x)=\frac{1}{6}(x+2)$ while the marginal density of y is $f_{y}(y)=\frac{1}{6}(2+8 y)$.

Now find the conditional distribution of x given y. This is given by

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f(y)}=\frac{\frac{1}{6}(x+4 y)}{\frac{1}{6}(2+8 y)} \\
& =\frac{(x+4 y)}{(8 y+2)}
\end{aligned}
$$

for $0<x<2$ and $0<y<1$. Now find the probability that $X \leq 1$ given that $y=\frac{1}{2}$.
First determine the density function when $y=\frac{1}{2}$ as follows

$$
\begin{aligned}
\frac{f(x, y)}{f(y)} & =\frac{(x+4 y)}{(8 y+2)} \\
& =\frac{\left(x+4\left(\frac{1}{2}\right)\right)}{\left(8\left(\frac{1}{2}\right)+2\right)} \\
& =\frac{(x+2)}{(4+2)}=\frac{(x+2)}{6}
\end{aligned}
$$

Then

$$
\begin{aligned}
P\left(X \leq 1 \left\lvert\, Y=\frac{1}{2}\right.\right) & =\int_{0}^{1} \frac{1}{6}(x+2) d x \\
& =\left.\frac{1}{6}\left(\frac{x^{2}}{2}+2 x\right)\right|_{0} ^{1} \\
& =\frac{1}{6}\left(\frac{1}{2}+2\right)-0 \\
& =\frac{1}{12}+\frac{2}{6}=\frac{5}{12}
\end{aligned}
$$

Let X and Y denote the proportion of two different chemicals in a sample mixture of chemicals used as an insecticide. Suppose X and Y have joint probability density given by:

$$
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{lc}
2, & 0 \leq x \leq 1,0 \leq \boldsymbol{y} \leq 1,0 \leq \boldsymbol{x}+\boldsymbol{y} \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(Note that $\mathrm{X}+\mathrm{Y}$ must be at most unity since the random variables denote proportions within the same sample).

- 1) Find the marginal density functions for X and Y.
- 2) Are X and Y independent?
- 3) Find $P(X>1 / 2 \mid Y=1 / 4)$.

$$
f_{1}(x)=\left\{\begin{array}{cc}
\int_{0}^{1-x} 2 d y=2(1-x), & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array} \quad f_{2}(y)=\left\{\begin{array}{cc}
\int_{0}^{1-y} 2 d x=2(1-y), & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

- 2) $f_{1}(x) f_{2}(y)=2(1-x)^{*} 2(1-y) \neq 2=f(x, y)$, for $0 \leq x \leq 1-y$.
- Therefore X and Y are not independent.
- 3)

$$
P\left(\left.X>\frac{1}{2} \right\rvert\, Y=\frac{1}{4}\right)=\int_{1 / 2}^{1} f\left(x \left\lvert\, y=\frac{1}{4}\right.\right) d x=\int_{1 / 2}^{1} \frac{f\left(x, y=\frac{1}{4}\right)}{f\left(y=\frac{1}{4}\right)} d x=\int_{1 / 2}^{1} \frac{2}{2\left(1-\frac{1}{4}\right)}=\frac{2}{3}
$$

Let X and Y be jointly distributed rv's with pmf $p(\mathrm{x}, \mathrm{y})$ or $\operatorname{pdf} f(\mathrm{x}, \mathrm{y})$ according to whether the variables are discrete or continuous. Then the expected value of a function $h(X, Y)$, denoted $E[h(X, Y)]$ or $\mu_{h(X, Y)}$
is $=\left\{\begin{array}{l}\sum_{x} \sum_{y} h(x, y) \cdot p(x, y) \quad \text { discrete } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) \cdot f(x, y) d x d y \text { continuous }\end{array}\right.$

Covariance

The covariance between two rv's X and Y is
$\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$
$=\left\{\begin{array}{l}\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) p(x, y) \quad \text { discrete } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y \text { continuous }\end{array}\right.$

Short-cut Formula for Covariance

$$
\operatorname{Cov}(X, Y)=E(X Y)-\mu_{X} \cdot \mu_{Y}
$$

Theorem: X and Y indep implies $\operatorname{Cov}(X, Y)=0$.

Proof:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E[X] E[Y]-E[X] E[Y](X, Y \text { indep }) \\
& =0
\end{aligned}
$$

$\operatorname{Cov}(X, Y)=0$ does not imply X and Y are independent!!

Definition: The correlation between X and Y is

$$
\rho=\operatorname{Corr}(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} .
$$

Remark: Cov has "square" units; corr is unitless.

Corollary: X, Y indep implies $\rho=0$.

Correlation Proposition

1. If a and c are either both positive or both negative, $\operatorname{Corr}(a X+b, c Y+d)=\operatorname{Corr}(X, Y)$
2. For any two rv's X and Y,
$-1 \leq \operatorname{Corr}(X, Y) \leq 1$.

Correlation Proposition

1. If X and Y are independent, then $\rho=0$, but $\rho=0$ does not imply independence.
2. $\rho=1$ or -1 iff $Y=a X+b$
for some numbers a and b with $a \neq 0$.

Theorem: It can be shown that $-1 \leq \rho \leq 1$.
$\rho \approx 1$ is "high" corr
$\rho \approx 0$ is "low" corr
$\rho \approx-1$ is "high" negative corr.

Example: Height is highly correlated with weight.
Temperature on Mars has low corr with IBM stock price.

Anti-UGA Example: Suppose X is the avg yards/carry that a UGA fullback gains, and Y is his grade on an astrophysics test. Here's the joint pmf $f(x, y)$.

	$X=2$	$X=3$	$X=4$	$f_{Y}(y)$
$Y=40$.0	.2	.1	.3
$Y=50$.15	.1	.05	.3
$Y=60$.3	.0	.1	.4
$f_{X}(x)$.45	.3	.25	1

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x} x f_{X}(x)=2.8 \\
\mathrm{E}\left[X^{2}\right] & =\sum_{x} x^{2} f_{X}(x)=8.5 \\
\operatorname{Var}(X) & =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=0.66
\end{aligned}
$$

Similarly, $\mathrm{E}[Y]=51, \mathrm{E}\left[Y^{2}\right]=2670$, and $\operatorname{Var}(Y)=60$.

$$
\begin{aligned}
\mathrm{E}[X Y] & =\sum_{x} \sum_{y} x y f(x, y) \\
& =2(40)(.0)+\cdots+4(60)(.1)=140 \\
\operatorname{Cov}(X, Y) & =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]=-2.8 \\
\rho & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=-0.415
\end{aligned}
$$

Cts Example: Suppose $f(x, y)=10 x^{2} y, 0 \leq y \leq x \leq 1$.

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{x} 10 x^{2} y d y=5 x^{4}, 0 \leq x \leq 1 \\
\mathrm{E}[X] & =\int_{0}^{1} 5 x^{5} d x=5 / 6 \\
\mathrm{E}\left[X^{2}\right] & =\int_{0}^{1} 5 x^{6} d x=5 / 7
\end{aligned}
$$

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=0.01984
$$

Similarly,

$$
\begin{aligned}
f_{Y}(y) & =\int_{y}^{1} 10 x^{2} y d x=\frac{10}{3} y\left(1-y^{3}\right), \quad 0 \leq y \leq 1 \\
\mathrm{E}[Y] & =5 / 9, \quad \operatorname{Var}(Y)=0.04850 \\
\mathrm{E}[X Y] & =\int_{0}^{1} \int_{0}^{x} 10 x^{3} y^{2} d y d x=10 / 21 \\
\operatorname{Cov}(X, Y) & =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]=0.1323 \\
\rho & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=0.4265
\end{aligned}
$$

Theorem: $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$, whether or not X and Y are indep.

Remark: If X, Y are indep, the Cov term goes away.

Proof: By the work we did on a previous proof,

$$
\begin{aligned}
\operatorname{Var}(X+Y)= & \mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}+\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2} \\
& +2(\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]) \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) .
\end{aligned}
$$

Theorem: $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

Proof:

$$
\begin{aligned}
\operatorname{Cov}(a X, b Y) & =\mathrm{E}[a X \cdot b Y]-\mathrm{E}[a X] \mathrm{E}[b Y] \\
& =a b \mathrm{E}[X Y]-a b \mathrm{E}[X] \mathrm{E}[Y] \\
& =a b \operatorname{Cov}(X, Y) .
\end{aligned}
$$

Example: $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)$.

Example:

$$
\begin{aligned}
& \operatorname{Var}(X-2 Y+3 Z) \\
& =\operatorname{Var}(X)+4 \operatorname{Var}(Y)+9 \operatorname{Var}(Z) \\
& \quad-4 \operatorname{Cov}(X, Y)+6 \operatorname{Cov}(X, Z)-12 \operatorname{Cov}(Y, Z)
\end{aligned}
$$

The proportions X and Y of two chemicals found in samples of an insecticide have the joint probability density function

$$
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{lc}
2, & 0 \leq \boldsymbol{x} \leq 1,0 \leq \boldsymbol{y} \leq 1,0 \leq \boldsymbol{x}+\boldsymbol{y} \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

The random variable $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ denotes the proportion of the insecticide due to both chemicals combined.

1) Find $E(Z)$ and $V(Z)$
2) Find an interval in which values of Z should lie at least 50% of the samples of insecticide.
3) Find the correlation between X and Y and interpret its meaning.

$$
\begin{gathered}
\boldsymbol{E}(\boldsymbol{X}+\boldsymbol{Y})=\int_{0}^{1-x} \int_{0}^{1-x}(x+y) 2 d y d x=\int_{0}^{1}\left(1-\boldsymbol{x}^{2}\right) d x=\frac{2}{3} \\
\boldsymbol{E}\left[(\boldsymbol{X}+\boldsymbol{Y})^{2}\right]=\int_{0}^{1-x} \int_{0}^{1-x}(x+y)^{2} 2 d y d x=\int_{0}^{1} \frac{2}{3}(1-\boldsymbol{x})^{3} d x=\left.\frac{2}{3}\left(x-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{2}{3}\left(\frac{3}{4}\right)=\frac{1}{2} \\
\boldsymbol{V}(\boldsymbol{Z})=\boldsymbol{E}\left(\boldsymbol{Z}^{2}\right)-\boldsymbol{E}(\boldsymbol{Z})^{2}=\frac{1}{2}-\left(\frac{2}{3}\right)^{2}=\frac{1}{1}
\end{gathered}
$$

Using Tchebysheff's theorem with $\mathrm{k}=\sqrt{2}$ we have,

$$
\boldsymbol{P}\left(\frac{2}{3}-\sqrt{\frac{2}{18}}<X+\boldsymbol{Y}<\frac{2}{3}+\sqrt{\frac{2}{18}}\right) \geq 0.5
$$

The desired interval is $(1 / 3,1)$.

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

$$
\begin{aligned}
& f(X)=\int_{0}^{1-X} f(X, Y) d y=\int_{0}^{1-X} 2 d Y=2(1-X), 0 \leq X \leq 1 \\
& f(Y)=\int_{0}^{1-Y} f(X, Y) d x=\int_{0}^{1-Y} 2 d X=2(1-Y), 0 \leq Y \leq 1 \\
& E(X)=E(Y)=\int_{0}^{1} z 2(1-z) d z=2 \int_{0}^{1} z-z^{2} d z=2\left(\frac{z^{2}}{2}-\frac{z^{3}}{3}\right)_{0}^{1}=2\left(\frac{1}{2}-\frac{1}{3}\right)=2\left(\frac{1}{6}\right)=\frac{1}{3} \\
& E\left(X^{2}\right)=E\left(Y^{2}\right)=\int_{0}^{1} z^{2}(1-z) d z=2 \int_{0}^{1} z^{2}-z^{3} d z=2\left(\frac{z^{3}}{3}-\left.\frac{z^{4}}{4}\right|_{0} ^{1}=2\left(\frac{1}{3}-\frac{1}{4}\right)=2\left(\frac{1}{12}\right)=\frac{1}{6}\right.
\end{aligned}
$$

$$
\operatorname{Var}(X)=\operatorname{Var}(\boldsymbol{Y})=\boldsymbol{E}\left(X^{2}\right)-(\boldsymbol{E}(X))^{2}=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}
$$

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1-x} x y 2 d x d y=\int_{0}^{1} x \int_{0}^{1-x} 2 y d y d x=\left.\int_{0}^{1} x\left(y^{2}\right)\right|_{0} ^{1-x} d x=
$$

$$
=\int_{0}^{1} x(1-x)^{2} d x=\int_{0}^{1} x-2 x^{2}+x^{3} d x=\left(\frac{x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{4}\right)_{0}^{1}=\frac{1}{2}-\frac{2}{3}+\frac{1}{4}=\frac{1}{12}
$$

$$
\rho=\frac{\frac{1}{12}-\left(\frac{1}{3}\right)^{2}}{\sqrt{\left(\frac{1}{18}\right)^{2}}}=\frac{\frac{1}{12}-\frac{1}{9}}{\frac{1}{18}}=-\frac{1}{2}
$$

A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Random Samples

The rv's X_{1}, \ldots, X_{n} are said to form a (simple
random sample of size n if

1. The X_{i}^{\prime} s are independent rv's.
2. Every X_{i} has the same probability distribution.

Simulation Experiments

The following characteristics must be specified:

1. The statistic of interest.
2. The population distribution.
3. The sample size n.
4. The number of replications k.

Using the Sample Mean

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and standard deviation σ. Then

$$
\begin{aligned}
& \text { 1. } E(\bar{X})=\mu_{\bar{X}}=\mu \\
& \text { 2.V }(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
\end{aligned}
$$

In addition, with $T_{\mathrm{o}}=X_{1}+\ldots+X_{n}$,
$E\left(T_{o}\right)=n \mu, V\left(T_{o}\right)^{o}=n \sigma^{2}$, and $\sigma_{T_{o}}=\sqrt{n} \sigma$.

Normal Population Distribution

Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, X is normally distributed, as is T_{o}.

The Central Limit Theorem

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and variance σ^{2}.
Then if n sufficiently large, \bar{X} has approximately a normal distribution with $\mu_{\bar{X}}=\mu$ and $\sigma_{\bar{X}}^{2}=\sigma^{2} / n$, and T_{o} also has approximately a normal distribution with $\mu_{T_{o}}=n \mu, \sigma_{T_{o}}=n \sigma^{2}$. The larger the value of n, the better the approximation.

The Central Limit Theorem

Rule of Thumb

If $n>30$, the Central Limit Theorem can be used.

Example/Theorem: Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} f(x)$ with $\mathrm{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Define the sample mean as

$$
\bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

Then

$$
\mathrm{E}[\bar{X}]=\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\mu .
$$

So the mean of \bar{X} is the same as the mean of X_{i}.

Meanwhile,...

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \quad\left(X_{i}^{\prime} \text { s indep }\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\sigma^{2} / n .
\end{aligned}
$$

So the mean of \bar{X} is the same as the mean of X_{i}, but the variance decreases!

