Chapter 4

- 1. A linear map $f: V \to W$ is called an isomorphism if
 - (a) there exists a linear map $g: W \to V$ with $fg = Id_w$ and $gf = Id_v$
 - (b) V and W are isomorphic
 - (c) for each *n*-tuple (v_1, \ldots, v_n) in V, the *n*-tuple $(f(v_1), \ldots, f(v_n))$ is a basis for W
- 2. By the rank rk (f) of a linear map $f: V \to W$, one understands
 - (a) dim Ker f
 - (b) dim Im f
 - (c) dim W
- 3. Here is a more subtle question. Remember dim Ker A + rk A = n for $n \times n$ matrices? Good. Now let A be an $n \times n$ matrix and let Ax = b have two linearly independent solutions. Then
 - (a) $\operatorname{rk} A \leq n$, and the case $\operatorname{rk} A = n$ can occur
 - (b) $\operatorname{rk} A \leq n-1$, and the case $\operatorname{rk} A = n-1$ can occur
 - (c) rk $A \leq n-2$, and the case rk A = n-2 can occur
- 4. Which of the following expressions is a linear combination of the functions f(t) and g(t)?
 - (a) 2f(t) + 3g(t) + 4
 - (b) f(t) 2g(t) + t
 - (c) 2f(t)g(t) 3f(t)
 - (d) f(t) g(t)
 - (e) All of the above
 - (f) None of the above
 - (g) Some of the above
- 5. To determine whether a set of vectors is linearly independent, you form a matrix which has those vectors as columns. If the matrix is square and its determinant is zero, what do you conclude?
 - (a) The vectors are linearly independent
 - (b) The vectors are not linearly independent
 - (c) This test is inconclusive, and further work must be done
- 6. Let $y_1(t) = \sin(2t)$. For which of the following functions $y_2(t)$ will $\{y_1(t), y_2(t)\}$ be a linearly independent set?
 - (a) $y_2(t) = \sin(t)\cos(t)$
 - (b) $y_2(t) = 2\sin(2t)$

- (c) $y_2(t) = \cos(2t \pi/2)$
- (d) $y_2(t) = \sin(-2t)$
- (e) All of the above
- (f) None of the above

7. Let $y_1(t) = e^{2t}$. For which of the following functions $y_2(t)$ will $\{y_1(t), y_2(t)\}$ be a linearly independent set?

- (a) $y_2(t) = e^{-2t}$
- (b) $y_2(t) = te^{2t}$
- (c) $y_2(t) = 1$
- (d) $y2(t) = e^{3t}$
- (e) All of the above
- (f) None of the above

8. The functions $y_1(t)$ and $y_2(t)$ are linearly independent on the interval a < t < b if

- (a) For some constant $k, y_1(t) = ky_2(t)$ for a < t < b
- (b) There exists some $t_0 \in (a, b)$ and some constants c_1 and c_2 such that $c_1y_1(t_0) + c_2y_2(t_0) \neq 0$
- (c) The equation $c_1y_1(t) + c_2y_2(t) = 0$ hold for all $t \in (a, b)$ only if $c_1 = c_2 = 0$
- (d) The ratio $y_1(t)/y_2(t)$ is a constant function
- (e) All of the above
- (f) None of the above

9. The functions $y_1(t)$ and $y_2(t)$ are linearly dependent on the interval a < t < b if

- (a) There exist two constants c_1 and c_2 such that $c_1y_1(t) + c_2y_2(t) = 0$ for all a < t < b
- (b) There exist two constants c_1 and c_2 , not both 0, such that $c_1y_1(t) + c_2y_2(t) = 0$ for all a < t < b
- (c) For each t in (a, b), there exists constants $c_1y_1(t) + c_2y_2(t) = 0$
- (d) For some $a < t_0 < b$, the equation $c_1y_1(t_0) + c_2y_2(t_0) = 0$ can only be true if $c_1 = c_2 = 0$
- (e) All of the above
- (f) None of the above

10. The linear transformation $T(x,y) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

- (a) T(x, y) = (x, y)
- (b) T(x, y) = (y, x)
- (c) T(x,y) = (-x,y)
- (d) T(x,y) = (-y,x)
- (e) None of the above

11. The linear transformation T(x, y) = (x + 2y, x - 2y), can be written as a matrix transformation $T(x, y) = A\begin{bmatrix} x \\ y \end{bmatrix}$ where

(a)
$$A = \begin{bmatrix} x & 2y \\ x & -2y \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}$$

- (d) It can't be written in matrix form
- 12. Which of the following is not a linear transformation?
 - (a) T(x, y) = (x, y + 1)
 - (b) T(x,y) = (x 2y, x)
 - (c) T(x,y) = (4y, x 2y)
 - (d) T(x,y) = (x,0)
 - (e) All are linear transformations
 - (f) More than one of these are not linear transformations
- 13. Is the transformation T(x, y, z) = (x, y, 0) linear?
 - (a) No, it is not linear because all z components map to 0
 - (b) No, it is not linear because it does not satisfy the scalar multiplication property
 - (c) No, it is not linear because it does not satisfy the vector addition property
 - (d) No, it is not linear for a reason not listed here
 - (e) Yes, it is linear

14. If f is a function, is the transformation T(f) = f' linear?

- (a) No, it is not linear because it does not satisfy the scalar multiplication property
- (b) No, it is not linear because it does not satisfy the vector addition property
- (c) No, it is not linear for a reason not listed here
- (d) Yes, it is linear
- 15. Let $T: \mathbf{R}^2 \to \mathbf{R}^3$ be a linear mapping, satisfying

T(1,2) = (1,0,1) and T(2,5) = (0,1,1)

Calculate T(0, 1)

- (a) (0, 2, -3)(b) (-1, 1, 2)(c) (1, 1, 0)
- (d) (-2, 5, 1)
- (e) (1, -1, 0)
- (f) (-2, 1, -1)