BREUIL O-WINDOWS AND 7-DIVISIBLE O-MODULES

CHUANGXUN CHENG

ABSTRACT. Let p > 2 be a prime number. Let O be the ring of integers of a finite
extension of Q, and 7 be a uniformizer of ©. We prove that, for any complete Noetherian
regular local O-algebra R with perfect residue field of characteristic p, the category of
Breuil O-windows over R is equivalent to the category of w-divisible O-modules over
R. We also prove that the category of Breuil O-modules over R is equivalent to the
category of commutative finite flat O-group schemes over R which are kernels of isogenies
of m-divisible O-modules. As an application of these equivalences, we then prove a
boundedness result on Barsotti-Tate groups and deduce some corollaries. The results
generalize some earlier results of Zink, Vasiu-Zink, and Lau.

1. INTRODUCTION

The theory of displays is a powerful tool to study p-divisible groups. The aim of this
paper is to generalize this theory and to study m-divisible O-modules. We first review the
main results from the theory of displays. Let p be a prime number and R be a commutative
ring. Assume that p is nilpotent in R. Following the notation in [23], we have a functor

BT : {nilpotent displays over R} — {p-divisible formal groups over R}.

Zink [24, Theorem 9] proved that this functor is an equivalence of categories if R is an
excellent local ring or a ring such that R/pR is an algebra of finite type over a field k.
Then Lau [14, Theorem 1.1] proved the equivalence for all R in which p is nilpotent.

Let R be a complete Noetherian local ring with perfect residue field of characteristic p.
For p = 2, we assume that pR = 0. Zink [23] defined a category of Dieudonné displays
over R and extended the functor BT to an equivalence

BT : {Dieudonné displays over R} — {p-divisible groups over R}.

Moreover, Lau [13] showed that this equivalence is compatible with duality.

The above results have been generalized to w-divisible formal O-modules and w-divisible
O-modules case. Let O be the ring of integers of a finite extension of Q, with uniformizer
7 and residue field F,. Let R be an O-algebra. A m-divisible (formal) O-module over R is
a p-divisible (formal) group G over R with an action of O given by ¢ : O — End(G), such
that the induced action of O on Lie(G) via ¢ coincides with the action through O — R.
Here we use Zink’s definition of formal groups ([24, Definition 80] and [2, Section 1.2.3]).
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Assume that p > 2. In his thesis [1], Ahsendorf defined a category of O-displays over
R and by adapting the method of Drinfeld [7], proved that the category of nilpotent O-
displays over R is equivalent to the category of w-divisible formal O-modules over R, if 7w
is nilpotent in R. This result was then extended to an equivalence between the category
of Dieudonné O-displays over R and the category of m-divisible O-modules over R, for
R a complete Noetherian local ring with perfect residue field of characteristic p. More
concretely, we have an equivalence

BT : {Dieudonné O-displays over R} — {m-divisible O-modules over R},

which is compatible with duality. See [2, Section 1] for more details of these results.

In [21, 15], the authors introduced frames and windows, which are generalizations of
the notion of displays, to study p-divisible groups. In particular, an equivalence between
the category of Breuil windows over R and the category of p-divisible groups over R is
established for R, if R is a complete Noetherian regular local ring with perfect residue
field of characteristic p. As an application, Vasiu and Zink [22] proved some boundedness
results for commutative finite flat group schemes over a discrete valuation ring of mixed
characteristic (0,p). Similar results and generalizations are also obtained in Breuil [5],
Bondarko [4], Kisin [12], Savitt [19], Liu [16, 17], Cais-Liu [6], etc. See the paper [22,
Section 1] for a detail introduction on the history of earlier results. The main goal of
this paper is to generalize the results in [21, 15, 22]. We explain our main results more
precisely in what follows.

In Section 2.1, we define O-frames and O-windows (Definitions 2.1 and 2.3). Let R be a
complete Noetherian regular local O-algebra with perfect residue field & of characteristic
p. On one hand, there is an O-frame attached to R given by

DR = (/WO(R)a TO(R)’ Ra Fv Vﬁl)‘

Here W@(R) is a sub-ring of the ring of ramified Witt vectors W (R), ¥ and V' are the

Frobenius and Verschibung morphisms respectively, Io (R) = VWO (R). See Section 3.1 for
the detail construction. For the definition of the functor Wy and its properties, we refer
to [2, Section 1.2.1], [9, Section 1.2] and [11]. Note that Hazewinkel [11] used a different
set of notations. In particular, the functor W, the Frobenius map ¥, the Verschiebung
map V', the Cartier map A, the n-th Witt polynomial w,, in [2] and this paper are denoted
by quioo, f, V, E, wk, respectively in [11, Theorem 6.17]. On the other hand, we may

q7n
choose a ring epimorphism

& = Wo(k)([z1,- - ,2,]] > R

such that z; — t; for 1 < i < r, where (t; € mrp | 1 < i < r) is a regular system
of parameters of R. There exists f(x1,---,2,) € (z1,---,2,)&, such that £ = 7 —
f(z1, -+ ,x,) € Ker(h). Then there is another O-frame attached to R given by

Br = (6,EG,R,0,01).

Here 0 : & — & is the morphism that extends the Frobenius on Wo (k) and o(x;) = «f for
1 <4 <r, where q is the cardinality of O/7O, 01 : ES — & is defined by o1(Ef) = o(f).
See Section 3.3 for more details.
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A Breuil O-window relative to & — R is a pair (Q, ¢), where @ is a free G-module of
finite rank, ¢ : Q — Q\?) ;= Q ®e,0 © is an G-linear map with cokernel annihilated by F.
With the above notation, we have the following result.

Theorem 1.1. Let O be the ring of integers of a finite extension of Q, and ™ be a
uniformizer of O. Let R be a complete Noetherian regular local O-algebra with perfect
residue field of characteristic p. Then the following categories are equivalent:

(1) the category of m-divisible O-modules over R;

(2) the category of O-windows over the frame Dg;
(3) the category of O-windows over the frame Bpr;
(4) the category of Breuil O-windows relative to & — R.

By a special O-group, we mean a finite flat group scheme which is the kernel of an
isogeny of w-divisible O-modules. To study these objects, we define Breuil O-modules. A
Breuil O-module relative to S — R is a pair (M, ¢), where M is an &-module of projective
dimension at most one and annihilated by a power of 7, ¢ : M — M (%) is an G-linear map
whose cokernel is annihilated by F. Following from Theorem 1.1, we prove the following
result in Section 3.5.

Theorem 1.2. Let O and R be as in Theorem 1.1. Then the following two categories are
equivalent:

(1) the category of special O-groups over R;
(2) the category of Breuil O-module relative to & — R.

As an application of Theorem 1.2, we generalize the boundedness result in [22] and
obtain the following result.

Theorem 1.3. Let O be the ring of integers of a finite extension of Q, with uniformizer
. Let R € Algy be a complete discrete valuation ring of mized characteristic (0,p) with
fraction field K and residue field k. There exists a non-negative integer s that depends
only on R and that has the following property. Let G and H be two special O-groups
over R. For each homomorphism f : G — H whose generic fiber fx : Gx — Hg is an
isomorphism, there exists a homomorphism [’ : H — G such that f' o f = 7%idg and
fof =m%idy. Therefore the special fiber homomorphism fy : G — Hy, has a kernel and
a cokernel annihilated by 7°.

This result has interesting consequences. In particular, we prove the following results
in Section 4.5.

Corollary 1.4. Let R and K be as in Theorem 1.3. The following two claims hold.

(1) Let G and H be special O-groups over R. Assume that the ramification degree of
R over O is less or equal to (¢ — 2). If Gk and Hy are isomorphic, then G and
H are isomorphic.

(2) Let X and Y be m-divisible O-modules over R. Then the natural map

Homp(X,Y) — Homo (Xk, Yi)

s a bijection.
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The first claim generalizes a result of Raynaud [18] and the second claim generalizes a
result of Tate [20].

The content of the paper is as follows. In Section 2, we introduce O-frames and O-
windows (Definitions 2.1 and 2.3) and prove some basic properties of these objects. In
particular, in Theorems 2.12 and 2.15, we prove that a morphism of frames o : F — F' is
(nil)-crystalline under some conditions, i.e., it induces an equivalence between the category
of (nilpotent) F-windows and the category of (nilpotent) F'-windows. This allows us to
translate properties between different bases.

In Section 3, we introduce various O-frames with special properties. The Dieudonné
O-frame Dpg attached to R is defined in Section 3.1. The windows over Dg are the same
as Dieduonné O-displays over R. Then by [2, Theorem 1.5], the first category and the
second category in Theorem 1.1 are equivalent. The Breuil O-frame Bg attached to R is
then defined in Section 3.3. A key property of B is that it is a k-O-frame (Definition 3.8).
Thus there exists a morphism of O-frames k : B — Dg. It turns out that this morphism
k is crystalline (Theorem 3.13). Then Theorem 1.1 follows by combining Theorem 3.13
and Proposition 3.18.

In Section 4, we prove Theorem 1.3. An explicit description of s is given at the beginning
of Section 4.4, following from the computations in Section 4.3. In Section 4.5, we deduce
some corollaries from Theorem 1.3.

2. O-FRAMES AND O-WINDOWS

2.1. Definitions. In this section, we introduce O-frames and O-windows following [15,
Section 2], [1, Section 3.1], and [2, Section 3]. Most of the notions are generalizations from
the paper [15]. Let O be a commutative unitary ring, 0 # 7 € O not a zero divisor, and
q a power of p. We call the triple (O, m, q) a ramification ring structure, short by RRS, if
p €m0 and z = 27 (mod 7) for all z € O.

Definition 2.1. Let (O, m, q) be an RRS. An O-frame is a quintuple F = (S, 1, R, 0,01),
where S is an Q-algebra, I C S is an ideal, R = S/I, 0 : S — S is an O-algebra
homomorphism, and o1 : I — S is a o-linear map of S-modules, such that the following
conditions hold:

(1) I+ xS C Rad(S).

(2) o(a) = a? (mod «S) for all a € S.

(3) o1(I) generates S as an S-module.
Let F = (S,I,R,0,01) and F' = (8", I',R',0’,0)) be two O-frames. A morphism of O-
frames « : F — F' is an O-algebra homomorphism « : S — §’; such that «(I) C I,
o'a = ao, ola = u-ao; for a unit v € S’. In order to specify u, we also call « a
u-homomorphism. If u =1, then « is called strict.

Note that in the definition, R is determined by S and I. We take R as part of the data
because it serves as the base of the objects that we consider later and it is convenient to
include it in the quintuple. Let R be an O-algebra. A simple example is the so called Witt
O-frame attached to R given by

Wo.r = (Wo(R), Io(R) := " Wo(R),R = Wo(R)/Io(R),",V ).
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Remark 2.2. (1) If F = (S,1,R,0,01) is an O-frame, then there exists a unique ele-
ment = 0 € S such that o(a) = 0oi(a) for all a € I ([15, Lemma 2.2] and [1,
Lemma 3.1.2]). Indeed, by definition, the map a? : 119 5 S is surjective. Here ag
is the linearization of o1. Choose b € I(?) such that ag (b) = 1 and define # = o¥(b),
then for all a € I, we have o(a) = Ug(b)a(a) = ag(ba) = ot(b)o1(a) = o1 (a).

(2) Let « : F — F' be a u-homomorphism of O-frames. Let F” be the frame obtained

from F' by replacing o} by u~lo}. Then o : S — S’ induces a strict morphism of
O-frames F — F”.

Definition 2.3. Let F = (S,I,R,0,01) be an O-frame. An O-window over F, or an
F-window, is a quadruple P = (P,Q, F, F1), where P is a finitely generated projective
S-module, ) C P is a submodule, F' : P — P and F; : Q — P are o-linear maps of
S-modules, such that the following conditions hold:

(1) There is a decomposition P =T @ L with Q = IT & L. Such a decomposition is
called a normal decomposition of P.

(2) Fi(az) =o01(a)F(x) for all a € [ and x € P.

(3) F1(Q) generates P as an S-module.

If P = (P,Q, F, F}) is an F-window, define a morphism of S-modules V¥ : P — S®s,qP
by VH(Fiy) = 1@y forally € Q and V¥(Fz) = 0 @ = for all z € P. Here § = 0 € S is
the element in Remark 2.2. Let (V) be the composition of the following maps

# i #
P Sws, P S0, (S®s, P) = -+ — S @gon P.

We say that P is nilpotent if (VN)¥ =0 (mod I + 7S) for some N € Z-y.
Denote by Winz (respectively NilpWinz) the category of F-windows (respectively the
category of nilpotent F-windows).

Remark 2.4. The operator F' is determined by Fj. Indeed, assume that aﬁ (b) = 1 with
be I, Then F(z) = Ff(bx) for all z € P. In particular, F'(z) = 0F(z) if x € Q.

2.2. Structure equation. Let P = (P,Q, F, F1) be a window over the O-frame F =
(S,1,R,0,01). By definition, we may write P=T @ L, Q = IT @& L. Thus P/Q =T/IT.
Let F*: S®g,T — T be the morphism defined by s®t + s- F(t) for all s € S and t € T
Let Ff be the linearization of F;. We obtain a morphism

F'o Fl: (S®5,T)® (S ®se L) — P.

We may write Fﬂ@F{i = (é g), with A : S@SJT — T, B : S®S,0L — T,
C:5®ssT =L, D:S®ssL — L. In the case that 7" and L are free S-modules,
the morphisms A, B, C';, D may be represented by matrices.

Define two morphisms ¢ : P - S ®g, P byt — 1®t (forallt € P) and 01 : I ®gT —

S®seT by a®t — o1(a)®t (forallac Tandt € T). Lety € I®sT C Q =(I®RsT)BL,
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le L,teT. The following is called the structure equation of P:
AN A B\ (o1(y)
1 - )
(2.1) l C D o(l)
‘ Pty (A 0B\ (o)
1) \Cc 6D)\o(l))"

Conversely, the equation (2.1) defines an F-window if and only if :S®s s P — P

A B
C D
is an isomorphism. In other words, we have the following result (cf. [15, Lemma 2.6]).
Lemma 2.5. Let F be an O-frame. Let P = T & L be a finitely generated projective
S-module and Q = IT @ L. Then the set of F-window structures (P,Q, F, Fy) on these
modules is bijective to the set of o-linear isomorphisms W : T & L — P.

2.3. Base changes.

Definition 2.6. (Cf. [15, Definition 2.9].) Let P (respectively P’) be an F-window
(respectively F'-window). Let a : F — F’ be a u-homomorphism of O-frames. A ho-
momorphism of O-windows g : P — P’ over «, also called an a-homomorphism, is an
S-linear map g : P — P’ with ¢(Q) C @', such that F'g = gF and F{g = u-gF;. A
homomorphism of F-windows is an id r-homomorphism in the previous sense.

Definition 2.7. Let « : F — F’ be a u-homomorphism of O-frames. Let P = (P, Q, F, F)
be a window over F with structure equation defined by ¥ (Lemma 2.5). The base change
a,P of P with respect to « is the F'-window defined by (oL, T, ¥’), where a,L =
S'®@s L, . T =8 5T, and ¥' (s @1) = uo'(s") @ (1), V(s @t) = o'(s") @ U(t), for all
seS, teT,lelL.

Similar as [15, Lemma 2.10], we have the following result.

Lemma 2.8. Let o : F — F' be a morphism of O-frames. Let P be an F-window and
P the base change of P with respect to a. Then the a-homomorphism of O-windows
P — P induces a bijection Hom g (o P, P') = Homq (P, P’) for any F'-window P’.

2.4. Limits. In the following, we define the limits of O-frames, limits of O-windows, and

dual O-windows. We follow the corresponding parts in [15, Section 2].
Assume that for each positive integer n we have an O-frame

Jtn = (S’I’M Ina Rna On, Uln)
and a strict morphism of O-frames m, : F,+1 — Fy, such that the maps S,+1 — S, and
I,+1 — I, are surjective and Ker(m,) C Rad(S,+1). Define l'&n]—"n = (S,1I,R,0,01) by
letting S = @Sn, I = @nln, R=S/I, o= @an, o1 = @aln. It is easy to check
that @fn is an O-frame. An F,-window is a system P, of F,,-windows P, together with
isomorphisms m,Ppi1 = Ph.

Lemma 2.9. The category of (@Fn)—windows 1s equivalent to the category of Fi-windows.

Proof. This is entirely similar to [15, Lemma 2.12]. In particular, from the proof of
[15, Lemma 2.12], for any F.-window P, the corresponding (@fn)—window is given
by (ImPy) = (P,Q, F, F1) with P = limP, etc. O
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2.5. Dual O-windows. Let P, P’, P” be windows over an O-frame F. A bilinear form of
F-windows 3 : Px P’ — P” is an S-bilinear map 3 : Px P’ — P” such that 3(QxQ") C Q"
and
B(Fi(z), Fi(z)) = FY (B(z,2))

for all z € Q and 2/ € Q. Let F denote the F-window (5, I,0,01). Let Bil(P x P', F) be
the set of all bilinear forms. For every F-window P, there is a unique dual F-window P?
represents the functor Bil(P x —, F), i.e., Bil(P x P’, F) = Hom(P’, P!) for any F-window
P’. Indeed, P! can be described as follows. Let P = (P,Q, F, F}), then

P' = (PY.Q,F'", F{)
where Q@ = {z € PY | 2(Q) C I} and MV = Homg(M,S) for any S-module M . If
P = T @ L is a normal decomposition and Q = IT @ L, then PV = LYV & TV and

Q = ILY @ TV. There is a natural isomorphism P* = P. See [15, Section 2] and the
references there for more details. We have the following result.

Lemma 2.10. Let o : F — F' be a u-homomorphism of O-frames. Let ¢ € S’ be a unit
such that c=1o'(c) = u. For any F-window P there is a natural isomorphism (depending
on c)

. (PY) = (a,P)".

Proof. This is entirely similar to[15, Lemma 2.14]. The given bilinear form P x Pt — F
induces a bilinear form a,P x a,(Pt) — F”, where F” = (S', I, uc’, us}) is considered as
an F'-window. Moreover, the multiplication by ¢ induces an isomorphism of F'-windows
F" = F'. The composition gives us a bilinear form a,P x a,(P?) — F', which induces
the isomorphism a.(P?) 2 (a,P)!. The lemma follows. O

2.6. Crystalline homomorphisms.

Definition 2.11. (Cf. [15, Definition 3.1].) A morphism of O-frames « : F — F' is called
crystalline if the base change functor o, : Winy — Wing is an equivalence of categories.
It is called nil-crystalline if the base change functor o, : NilpWinz — NilpWinz is an
equivalence of categories.

Corresponding to [15, Theorems 3.2 and 10.3], we have the following results. The proofs
here are similar to the proofs in [15], which are variations of the proofs of [24, Theorem
44] and [23, Theorem 3].

Theorem 2.12. Let F = (S,I,R,0,01) and F' = (S",I',R,0’,0}) be two O-frames.
Let o : F — F' be a morphism of O-frames such that o : S — S’ is surjective. Let C =
Ker(S — 5’). Assume that R = R', 01(C) C C, 0(C) =0, and o1 is elementwise nilpotent
on C. Assume further that finitely generated projective S’'-modules lift to projective S-
modules. Then the morphism « is crystalline.

Note that C' C I since R = R’. Thus 01(C) makes sense.

Proof. The functor « is essentially surjective since normal representations (7, L, ¥) can
be lifted from F’ to F. It suffices to show that a, is fully faithful. Since a homomorphism

(1) on P @ P, it suffices to show
that a, is fully faithful on automorphisms. This follows from the following lemma. U

g : P — P’ can be encoded by the automorphism (;
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Lemma 2.13. In the situation of the theorem with F = F', assume that P = (P,Q, F, F})
and P' = (P,Q, F', F]) are two F-windows such that F = F' (mod C) and Fy = F}
(mod C). Then there is a unique F-window isomorphism g : P — P’ with ¢ = id
(mod C).

Proof. By assumption, we may write F' = F + € and F| = Fy + 1, where ¢ : P — CP and
1 :Q — CP are o-linear maps. Let g = 1+ w, where w : P — CP is an arbitrary S-linear
map. By Remark 2.4, g induces an isomorphism of F-windows if and only if gF} = F{g
on @, which is equivalent to

(2.2) n=wk — Fw.

Fix a normal decomposition P = L& T, Q=L & IT. Let [ +at € Qwithl e L, t €T,
and a € I. Then

n(l+ at) = n(l) + o1(a)e(t),
(2.3) w(Fi(l+at)) =w(F1(1)) + o1(a)w(F(t)),
F(w(l +at)) = F{(w(l)) + 01(a) F'(w(t)).

(
If ce C and z € P, then F'(cx) = o(c)F'(z) = 0 since o
The equation (2.2) is equivalent to

C) = 0. Therefore, F'w = 0.

(2.4)

€ =wkF on T,
n=wkF; — Flw on L.

By definition, ¥ := Fy + F : L®T — P is a o-linear isomorphism. To give w is equivalent
to giving a pair of o-linear maps

wp,=wlk :L—>CP, wp=wkF:T — CP.

(vF)

L. -1 projection
Let A : L — L) be the composition L ¢ P —-— L) g T(0) P20 1(0) and
£y—1 ot
7 : L — T© be the composition L C P W, 1) @ o) Prolection /(g mpan

wlp = wuL)\ + ng. Thus equation (2.4) is equivalent to

(2.5) {WT = elr,

wr, — Fl’wﬂL)\ =nlL+ Fl’wﬁTT.

By assumption, o} is elementwise nilpotent on C. Thus the endomorphism Fj on CP is
elementwise nilpotent since F](cz) = o1(c)F'(z) for all ¢ € C and x € P. Let H be the
abelian group of o-linear maps L — C'P. Define U € End H by U(wr) = Fl’w%A. Since L
is finitely generated, U is also elementwise nilpotent, which implies that (1—U) is bijective.
Therefore, equation (2.5) has a unique solution in (wr,,wr). The lemma follows. O

Corollary 2.14. Let F = (S,1,R,0,01) and F' = (S",I', R',0’,0}) be two O-frames. Let
a: F — F' be a morphism of O-frames such that o : S — S’ is surjective and R = R’.
Let C = Ker(S — S'). Assume that there is a finite filtration C = Cy D -+ D Cy, = 0 with
o(C;) C Ciy1 and 01(C;) C C; such that o1 is elementwise nilpotent on C;/Cit1. Assume
further that finitely generated projective S’'-modules lift to projective S-modules. Then the
morphism « s crystalline.
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Proof. The morphism « factors into 7 — F” — F’ where F” is determined by S” = S/C}.
By induction, we may assume that o(C) = 0. The corollary follows immediately. U

Theorem 2.15. Let F = (S,I,R,0,01) and F' = (S, I',R',0’,0}) be two O-frames.
Let o : F — F' be a morphism of O-frames such that o : S — S’ is surjective. Let
C = Ker(S — §'). Assume that R = R', 01(C) C C, and o(C) = 0. Assume further
that finitely generated projective S’-modules lift to projective S-modules. Let J = (I,7).
If J"C = 0 for some large integer n, then the morphism « is nil-crystalline.

Proof. The proof is the same as the proof of Theorem 2.12. In this case, P is nilpotent.
Thus in the last paragraph of the proof of Lemma 2.13, A is nilpotent modulo J™ for any
m > 1. Since J"C = 0, the endomorphism U is nilpotent. The theorem follows. O

Corollary 2.16. In Theorem 2.15, the condition o(C) = 0 is not necessary.

Proof. Let Co = C, C; = I1+xC, ---, Cp, = IT"C + 79"V C + ... 4 771 [C + 7"C.
We claim that o1(Cy,) C Cp, 0(Cy) C Chryr.

Indeed, since the image of o1 : I — S generates S, we may write 1 = >, spo1(ax) for
some s, € S and aj € I. Then the number 6 in Remark 2.2 is given by § = >, spo(ax).
Since o(ax) = ai (mod wS), 6 is an element in 17 + 7S. The claims follow by induction.

Let N be large enough such that Cy = 0. Consider the chain of morphisms

S=S/Cy —S/Cn_q1—--—S/C=5.

Each map S/C; — S/C;_1 induces a morphism of O-frames which satisfies the assumptions
in Theorem 2.15. The corollary follows easily. O

2.7. Hodge filtration.

Definition 2.17. Let P = (P,Q, F, F1) be a window over F. The Hodge filtration of P
is the submodule

Q/IP C P/IP.
The following result is entirely similar to [15, Lemma 4.2].

Lemma 2.18. Let « : F — F' be a strict morphism of O-frames such that S = S’. Hence
R — R’ is surjective and I C I'. Then the category Winr of windows over F is equivalent
to the category of pairs (P',V), where P’ is an F'-window and V- C P'/IP’ is a direct
summand and is a lift of the Hodge filtration of P’.

Proof. The equivalence is given by the functor P = (P,Q, F, F1) — (a.P,Q/IP). In our
case, if P = (P,Q, F, Fy), then an.(P) = (P,I'P + Q, F, F}), where Fi(ax) = o1(a)F(x)
for all @ € I' and x € P. It is easy to see that this functor is fully faithful. We show
that it is also essentially surjective. Let (P = (P',Q',F',F|),V C P'/IP') be such a
pair. Let P = P’ Q C P the preimage of V of the map P = P’ — P'/IP’. Then
IP =1P' Cc Q C Q. Let Fy : @ — P be the restriction of F| : Q" — P’. We check
that P = (P,Q,F = F', Fy) is an F-window. It suffices to verify that F} : Q@ — P is a
o-linear epimorphism. Let P’ = L @& T be a normal decomposition. Thus Q' = L @ I'T.

By changing the decomposition by (i (1)> with a morphism ¢ : L — I'T, we may assume
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that V' = L/IL. Therefore Q = L® IT. To check that F} : Q — P is o-linear epimorphic,
it is equivalent to proving that

FeF, :TeoL— P

is a o-linear isomorphism. This is true since (P, Q’, F, F}) is an F'-window. The lemma
follows. O

Remark 2.19. Assume that o : F — F' is a strict morphism of O-frames such that S — S’
is surjective and I’ = I.S’. If we may factor « into strict O-frame morphisms

(S,I,R,0,00) %5 (S,I",R ,0,07) 2% (§',I',R, ¢, 0}),

such that as is crystalline, then the category of F-windows is equivalent to the category
of F'-windows equipped with a certain lift of Hodge filtration. We explain this idea with
an explicit example in Section 2.8.

2.8. O-pd-thickenings. We recall the definition and basic properties of O-pd-structures
following [8, Section 7] and [10, Section B.5.1].

Definition 2.20. Let R be an O-algebra and a C R an ideal. An O-pd-structure on a is
a map 7 : a — a, such that

(1) m-y(z) =2

(2) y(r-z) =r?-y(z)

(3) Y(x +y) =v(x) +7(¥) + Yocicy = (3) st oyt

hold for all » € R and x,y € a. Let 4™ be the n-fold iteration of v. We call v nilpotent if
a™ = 0 tor all n > 0, where a™ C a 1s generated by all products || v (x;) with x; € a
"l = 0 for all 0, where al™ i d by all prod a ith

and Y q% > n.

For each n, define
q7t—l+qn—2+m+q+1_n An

oy =T Y'ia—a
and
w) : Wol(a) = a
(wale"' 7£CTL7"') — an(xO) +O£n_1(l‘1) + - +a1(xn—1) + Zp.

We call w), the n-th divided Witt polynomial. The main application of this structure is as
follows (cf. [10, Lemma B.5.8]). Define on a"¥ a W (R)-module structure by setting

&lag, a1, . ..] = [wo(§)ap, wi(§)ay, .. ]
for all ¢ € Wo(R) and [ag, a1, ...] € a. Then we have an isomorphism of Wy (R)-modules
log : Wo(a) — oV
a=(ap,a1,...) — [w(a),wi(a),...].
Moreover, if v is nilpotent, the above isomorphism induces an isomorphism
log : Wo(a) — a®V.

Here W@(a) is the object defined in Section 3.1. We may view a as an ideal of Wp(a) via
the map a — a = log~*([a, 0, ...]). Since ¥ acts on the right hand side by

F[ao,al,...] = [rai,maqg,...,7a;,.. |
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for all [ag, a1,...] € aV, we obtain that, for the ideal a C Wp(a), Fa = 0.
In this paper, as in [23], an O-pd-thickening is a triple (S, R,~), where S and R are
O-algebras with a surjection S — R, « is a nilpotent O-pd-structure on Ker(S — R).
Let (S, R,7) be an O-pd-thickening such that 7 is nilpotent in S and R. For R and S,
we have the Witt O-frames

Wgr = (W(’)(R)aIO(R) = VWO(R)7R>F7V71)7

Ws = (Wo(S), Io(S) = ' Wo(S),5. 7,V ),

where ¥ and V' are the corresponding Frobenius and Verschiebung respectively. The nat-
ural map Wy (S) — Wp(R) gives us a strict morphism of O-frames Ws — Wg. Let J =
Io(S)+Wo(a) C Wo(S). Since Wo(a)\ (Io(S)NWo(a)) = {[a,0,---,0,---] | a € a} = a,
we may extend V' : Io(S) = Wo(S) to a1 : J — Wo(S) by setting

o1(Vn) =n (for all n € Wp(S)) and oy(a) =0 (for all a € a).
Thus we obtain a third O-frame

WS/R = (WO(S)) J7 RJ F7 0-1)‘

The morphism Wg — Wg, factors as Wg — Wg/r % Wg in the obvious way.

Proposition 2.21. The morphism « is nil-crystalline. i.e., the categories NilpVVinWS/R
and NilpWiny,, . are equivalent.

Proof. It suffices to check that o : Wg,r — Wg factors through a finite chain of morphisms
of O-frames such that each morphism satisfies the conditions in Theorem 2.15.
For ¢ big enough, we have

S =S/nta — S/r""ta— .- = S/a=R.
This induces a chain of morphisms of O-frames
Ws/r = W(s/xta)/rR = Wis/xt-1a)/r = "+ = W(s/a)/r = Wh-

Note that Ker(Wo(S/7la) — Wo(S/7mta)) = Wo(rla/m* ta). Using logarithmic coor-
dinates, since ma/mi*+a is m-torsion, it is easy to see that * (Wo(mia/m"+1a)) = 0. The
claim follows. O

Definition 2.22. Let P = (P,Q, F, F1) be a nilpotent Wg-window. The Dieudonné
crystal Dp is the functor that sends an O-pd-thickening S — R to the finitely generated
S-module P/Io(S)P, where (P, Q, F, F1) is the unique Wg,g-window lifting P.

Let NﬂpWinﬁvR be the category of pairs (P, V), where P is a Wgr-window and V is a
lift of the Hodge filtration in Dp(.S). By Lemma 2.18, we have the following result.

Corollary 2.23. The two categories NilpWiny,, and NilpWin;?VR are equivalent.
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3. BREUIL O-FRAMES

3.1. Dieudonné O-frames. Let R be a local O-algebra. Assume that R is an Artinian
local ring with perfect residue field k. Let m C R be the maximal ideal of R. Then we
have the following exact sequence

0 — Wo(m) = Wo(R) 5 Wo(k) — 0.

It admits a canonical section 0 : Wo(k) EN Wo(Wo(k)) — Weo(R), which is a ring
homomorphism commuting with F. Here A is the unique natural morphism (Cartier
morphism) of O-algebras
A:Wo(=) — Wo(Wo(-))
such that W(A(z)) = [F" x]n>0, where W = (wg, w1, ...). The Cartier morphism is the
morphism £ in [11, Theorem 6.17].
Since m is nilpotent, we have a subalgebra of W (m):

W@(m) = {(zo,x1,--+) € Wo(m) | z; = 0 for all but finitely many ¢}.
Note that /Wo(m) is stable under ¥ and V.

Definition 3.1. In the case R is Artinian, we define the subring /WO(R) C Wo(R) by
Wo(R) = {€ € Wo(R) | €~ 67(¢) € Wo(m)}.
Again we have an exact sequence
0 = Wo(m) = Wo(R) 5 Wo(k) — 0
with a canonical section ¢ of 7. - .
In the case R is Noetherian, we define Wp(R) := @W@(R/mﬁ), where mp C R is the

maximal ideal.

We also define TO(R) = V(

Wo(R)).
The following result is proved in [2, Lemma 1.8].

Lemma 3.2. /W@(R) is stable under ' and V.

Definition 3.3. The Dieudonné O-frame attached to R is the frame
Dr = (Wo(R),Io(R),R,*,V").

Remark 3.4. (1) For the O-frame Dg, 0p,, = .

(2) Windows over Dg are Dieudonné O-displays over R in the sense of [2, Section
5.1]. Note that Wo (R) is a local ring, therefore the normal decompositions exist
automatically. e

(3) The inclusion Wp(R) — Wo(R) induces a strict O-frame morphism Dr — Whg.

(4) Let S be another Noetherian local O-algebra. A local O-algebra homomorphism
S — R induces a strict O-frame morphism Dg — Dpg.

Let (S,R,7) be an O-pd-thickening and a the kernel of S — R. The discussion in
Section 2.8 remains true if we replace the Witt O-frames Wg and Wg by the Dieudonné
O-frames Dg and Dg respectively. More precisely, as Wg g, define

DS/R — (/WO(S)ajv R,F,O'l),
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where J = f@(S )+ W@(a). We have the following result.
Proposition 3.5. Let (S, R,~) be an O-pd-thickening with m nilpotent in S and R. The
following claims hold.

(1) The two categories NilpWinyp . and NilpWinp, - are equivalent.

(2) The two categories Winpg . and Winp,, are equivalent.
Definition 3.6. Let P = (P,Q, F, F1) be a Dp-window. The Dieudonné crystal Dp is
the functor that sends an O-pd-thickening S — R to the finitely generated S-module
P/Io(S)P, where (P,Q, F, F1) is the unique Dg,g-window lifting P.

Let Win%R (resp. NilpWin3, ) be the category of pairs (P, V), where P is a Dg-window
(resp. nilpotent Dr-window) and V is a lift of the Hodge filtration in Dp(S). We have
the following result.

Proposition 3.7. Let (S, R,~) be an O-pd-thickening with m nilpotent in S and R. The
following claims hold.

(1) The two categories NilpWinp and NilpWin%R are equivalent.

(2) The two categories Winp, and V\/'im%R are equivalent.

3.2. k-O-frames.

Definition 3.8. A k-O-frame is an O-frame F = (5,1, R, 0,01) such that S and Wp(R)
have no 7-torsion, and o () — 07 € wS*.

Lemma 3.9. Let R be an O-algebra with m € Rad(R). Let u € Wo(R) and r € Z>o.
Assume that 7"u = (ag, a1,as,---). Then the element u is a unit in Wo(R) if and only if
ar 1s a unit in R.

Proof. Since 7(bg,by,---) = (0,b3,0%,--+), by replacing R by R/7R, it suffices to prove
the claim for » = 0, i.e., u = (agp,a1,---) is a unit in Wp(R) if and only if ap is a unit
in R. Since Wo(R) = limWo ,(R) where Wo »(R) = Wo(R)/(V" Wo(R)), it suffices to
show that an element u € Wo ,,41(R) that maps to 1 in Wp ,(R) is a unit. Using the
formula of multiplications of Witt vectors, this is the same as saying that, for any = € R,
x +y+ "2y = 0 has a solution. This is true since m € Rad(R). The lemma follows. O

Proposition 3.10. Let F = (S,I,R,0,01) be a k-O-frame with m € Rad(R). Then
there exists a u-homomorphism of O-frames k : F — Wpg lying over idg for some unit
u € R. The element u and the morphism k are functorial with respect to strict O-frame
morphisms.

Proof. There exists a morphism § : S — Wp(S) such that w,(d(s)) = o"(s), where w,, is
the n-th Witt polynomial attached to Wp. Let k : S — Wy (R) be the composition

S 2 Wo(S) = Wol(R).
We show that k induces a morphism of O-frames. First, by the following commutative
diagram

S —2 s Wo(S) —— Wo(R)

(31) inclusionT wol lwo

I inclusion IS R
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it is easy to see that x(I) C Io(R). Note that wn(6(c(s))) = wn (¥ (8(s))) = o™1(s) for
all s € S, we see that § oo = ¥ 04, and thus koo = ¥ 0 0. Next, we check that there
exists u € Wo(R)* such that V 'k = u - koy. For any a € I,

k(0)5(01(a)) = K(001(a)) = K(o(a))
=F(w(a) =7V (s(a)).

It suffices to show that 7~ 'x(f) is a unit in Wp(R). Then we can take u = 7~ 1x(6). Let
k(0) = (xo,x1,---) and 0(0) = (Zg, &1, ). By Lemma 3.9, it suffices to check that Z; is
a unit in S. Using the following two identities

{0(9) = wi(6(0)) = & + miy

(3.2)

3.3 -
( ) 0= U)Q((S(@)) = Xo,

we obtain 7z = o(f) — 6. Note that o(f) = 07 (mod 7S*), thus ; € S*. From the
construction, k and u are functorial. O

Corollary 3.11. Let F = (S,1, R, 0,01) be a k-O-frame with S = Weo(k)|[[z1,- -, x,]] for
a perfect field k of characteristic p. Assuem that o extends the/]i’robenius automorphism
of Wo(k) by o(x;) = af for 1 < i <r. Then u is a unit in Wo(R), and k induces a
u-homomorphism of O-frames k : F — Dpg.

Proof By the construction in the proof of the proposition, it suffices to show that 6(5) C

W@(S) Since wy, (6(x;)) = wy([z4]) = xq for all n, for each monomial H oo 2 =
L =] e W\(S) Let mg be the maximal ideal of S. Then S has image in W@(S/ms) under
the composition S — Wp(S) = Wo(S/mY). Indeed, there are only finitely many terms
of an element of S with degree less that n. Therefore, 6(5) € LWO(S /mé) = W@(S)

The claim follows. U

3.3. Breuil O-frames. Let R be a complete regular local O-algebra with perfect residue
field k of characteristic p. We choose a ring homomorphism

& = Wo(k)|[a1, - ,2,]] > R

such that x; +— t;, where (t; € mp) is a regular system of parameters of R. In R,
T = > ajt; € mp with a; € R. There exists f(z1, -+ ,2,) € (x1, -+ ,2,)S, such that
E=m— f(z1, -+ ,z,) € Ker(h). Note that £ ¢ 11126 since m, x1, -+, &, form a basis of
mg/m%. Also, &/(E) is a regular local ring. Thus &/(E) = R.

Let 0 : & — & be the morphism that extends the Frobenius on Wo (k) and o(z;) = z]
(1 <i<r). Define o1 : E6G — & by 01(Ef) = o(f) (for all f € &). Then we have the
following result.

Lemma 3.12. The quintuple Br = (6, ES, R, 0,01) is a k-O-frame. We call it the Breuil
O-frame over R.

Proof. 1t is easy to check that Bg is an O-frame. Since o(Ef) = o(E)o(f) = o(E)o1(Ef)
for all f € &, we see that § = 65, = o(F). By assumption, & and Wp(R) have no
m-torsion. Moreover, o(f) — 07 has constant term © — w9. So (o(f) — 07) € 7&*. The
lemma follows. O
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An immediate consequence of the lemma is the existence of an O-frame u-homomorphism
k:B R — DR,

where u € Wo(R) is determined by the equation 7u = k(o(E)). The following result
corresponds to [15, Theorem 7.2].

Theorem 3.13. Let R be a complete regular local O-algebra with perfect residue field k
of characteristic p. The O-frame morphism k : B — Dpg is crystalline. i.e., it induces
an equivalence between the categories Wing, and Winp,,.

To prove the theorem, we introduce more objects. Let J C & be the ideal (x1,--- ,x,),
mp the maximal ideal of R. For each positive integer a, let §, = 6/J*G and R, = R/m%,.
Then R, = &,/EG,. Note that E is not a zero divisor of &,, because the leading term of
Eism € Gr](6,) = Wo(k) and is not a zero divisor in Gr/ &,. Since o(J) C J,0: 6 = &
induces a morphism o, : 6, = &,. Define 01, : ES, — &, by 014(Fy) = 04(y) for all
y € G4. Then we have the following result.

Lemma 3.14. The quintuple Br, = (84, EGq, R4, 04,014) s a k-O-frame. The projec-
tion & — &, induces a strict O-frame morphism Br — Br,.
Let u denote the image of u in Wo(Ry). Then the u-homomorphism k : Br — Dpr induces
a u-homomorphism

Kq - BRa — DRa-

Proof. The claims follow from the construction. O

Proposition 3.15. For each positive integer a, the morphism kg : Br, — Dg, is crys-
talline.

Proof. Let BQH be the quintuple (S441, —fa+1, R4, 0441, 01(a+1)); Where
o Iopi1 = ESqyy +Jo/ I,
® Ti(atl) : I:a+1 — Gg41 is the extension of oyqi1) : EGat1 — Gaq1 by sending
J4/J4 1 to zero.
The map G(q41) is well defined. Indeed, ES, 1 N J*/J*1 = E(J*/J*t!). For any
x € J)J 01 (411)(Ex) = 0ag1(x), which is zero in J*/JoHL,

It is easy to check that Ba+1 is a k-O-frame. The homomorphism ke4+1 @ Se11 —
W@ (Ra+1) induces a morphism of O-frames fq41 : Ba—i—l — DRyy1/R.- We claim that Rg11
is a u-homomorphism. Indeed, it suffices to check that o1k44+1 = u - Ka+101(a41) O fa+1.
For this, it suffices to check that o1k4+1 =0 on J*/J @+l This follows from the identity
o1([z]) = 0, where z € J* is a monomial of degree a.

Summing up the above construction, we obtain the following commutative diagram of
O-frames

L S B
Br,., —— Bax1 —— Brg,

(3.4) lfeaﬂ JR““ lﬁa

DRa-H L—> DRa+1/Ra L) DRa‘
Here the lower line is obtained from the O-pd-thickening R/n*t“RJrl

O-pd-structure on m%/m%+".

— R/m$, with trivial
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We now prove the proposition by induction on a. If a = 1, then k1 is an isomorphism.
There is nothing to prove. Assume that k, is crystalline. Since the filtration on J¢/J+!
is trivial and both 8 and P’ are crystalline, the morphism &, is crystalline. Since to
lift a Hodge filtration in the upper case and in the lower case are the same, we conclude
that k441 is crystalline. The proposition follows. O

Proof of Theorem 3.13. Because Br-windows (respectively Dr-windows) are equivalent
to compatible systems of Br,-windows (respectively Dg, -windows), the theorem follows
immediately from Proposition 3.15. 0

3.4. Breuil O-windows and Breuil O-modules. Let (S, R, E) be as in Section 3.3.

Definition 3.16. A Breuil O-window relative to & — R is a pair (Q, ¢), where @Q is a
free G-module of finite rank, ¢ : Q — Q) := Q ®e,0 © is an G-linear map with cokernel
annihilated by F.

We denote by BrWing,r the category of Breuil O-windows relative to & — R.

Lemma 3.17. Let (Q,¢) be a Breuil O-window relative to & — R. Then ¢ is injective
and Coker ¢ is a free R-module.

Proof. The first claim follows from the surjectivity of the morphism ¢ ® Frac&. By this
claim, the cohomological dimension of Coker¢ is 1. Thus the height of Coker¢ is r.
Therefore, Coker ¢ is a free R-module because R is regular of dimension r. g

Proposition 3.18. The categories BrWing g and Wing,, are equivalent.

Proof. Let P = (P,Q, F, F1) be an object in Wing,,. Let Q = (Q, ¢), where ¢ : Q — Q)
inclusion (Ff)71
P

is the composition Q » Q). Then Q is a Breuil O-window relative to
S — R. Conversely, for a Breuil O-window (Q, ¢), define a quadruple P = (P, Q, F, F}),
where P=Q9), F : Q —» Q@) is given by z —» z® 1 forall z € Q, F : P — P is given
by 1® z +— Fi(Ex) for all x € Q. Then P is an O-window over Bg. The two functors are
inverse to each other. The proposition follows. O

Definition 3.19. A Breuil O-module relative to & — R is a pair (M, ¢), where M
is an G-module of projective dimension at most one and annihilated by a power of m,
¢: M — M) is an G-linear map whose cokernel is annihilated by E.

Following the strategy in [21, Section 6], we prove some properties of Breuil O-modules.
Lemma 3.20. Let (M, ¢) be a Breuil O-module relative to & — R. Then ¢ is injective.
Proof. Let x € & such that x € #&. We claim that x : M — M is injective. Indeed, let

0P %P M—0

be a resolution of M, where P and P’ are finitely generated free G-modules of the same
rank. In this case, det(a) = 7™ - unit for some integer n. There exists 8 : P — P’, such
that @ o 8 = 7. Thus the induced morphism P’'/zP’ — P/xzP is injective since 7 is not
a zero divisor in §/x&. The claim follows by Snake Lemma.

By the claim, the map M — M) from M to its localization at the prime ideal (7) is
injective. The localization M) is of finite length over the discrete valuation ring & ;). Let
0 : &) = & (5 be the extension of o on & by setting o(7) = 7. Then we see that M, and
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~

(
s
is surjective. Therefore it is an isomorphism. Thus ¢ is an injection.

M(U)) have the same length. Because £ ¢ (7), the induced morphism ¢y : M) — M

S
o2

Corollary 3.21. Let (M, ) be a Breuil O-module relative to & — R. There exists a
unique &-linear morphism v : M9 — M, such that ¢np = ¢ = E.

Remark 3.22. Let P’ and P be projective modules of the same rank over ring S. Let
a : P! — P be a homomorphism. Then there is a well defined ideal J(a) := det(«)S,
which generalizes the usual det(«) in the free modules case.

Lemma 3.23. Let F = (S,I,R,0,01) be an O-frame. Let o : P — P’ be a morphism
of F-windows. Assume that Rankg P = Rankg P, Rankr(P/Q) = Rankg(P’/Q"). Then
o(Ha))S =¥ (a).

Proof. Since the question is local, we may assume that all modules are free. By assumption,
we may assume that P and P’ have normal decompositions P =T & L, P/ = T' & L,

where T =S¢ = T" and L = S¢ = L/ for some integers c and d. Let (é g) € GL¢1q(5)

/ /
and (é, ZB;/> € GL¢4q(S) be morphism matrices of Fy : IT® L — T @ L and F] :
Y

X
u 7
a:T®L—T @ L. Since o defines a morphism of windows, Y has entries in I and

) (& o) =& ) (05 73

IT"® L' — T' & L' respectively. Let € GL.14(S) be the matrix that defines

_ Xy _ o(X) oY) oy
Let t = det (U 7 and t’ = det (QU(U) o(2) )" Then J(«) = ¢S = t'S. On the other
_ o(X) oY)
hand, det(o(a)) = det <90(U) o(2) )" The lemma follows. O

Lemma 3.24. In the same situation as in Lemma 3.23, assume that 7 is not a zero divisor
in S and Ny>17"S = 0. Assume further that Spec S/mS is connected. Then ¥(a) = ©"S
or ¥(a) = 0.

In the case that ¥(a) = 7S, we call a an isogeny of O-height h.

Proof. Since the situation is locally principal, we may assume that ¥(a) = &S for some
€ € 5. Assume that o(§) = 7€ for 7 € §*. Then 7¢& = £ (mod 75). Because ¢ and
€4=1 — 7 are relatively prime, i.e., (£,£97! —7) = S, we have

Spec(S/mS) = D(&) UD(E7 L — 7).

By assumption, D(§) = Spec(S/nS) or D(§) = (). If € is a unit, we are done. If £ € 7S,
assume that £ = m&'. Applying the above argument repeatedly, we either obtain a unit &
with € = 7l€, or € € Np>17"S = 0. In either case, the lemma holds. O

Lemma 3.25. Fach Breuil O-module relative to & — R s the cokernel of an isogeny of
Breuil O-windows relative to & — R.
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Proof. Let (M, ¢) be a Breuil O-module. Let J and L be finitely generated free &-modules
and 7 : J @& L — M( be an S-linear epimorphism which maps EJ & L surjectively to
¢(M). Then there exists a unique S-linear map 71 : J @ L — M such that the following
diagram is commutative:

JoL —— M
(3.5) lEde—HdL l¢>
EJ& L —— Im(¢)

Furthermore, there exists an G-linear isomorphism v: J & L — J (@) @ L(©) which makes
the following diagram commutative:

(3.6) Jo L u M©)
|
1%
J@) g )

Indeed, let N be a finitely generated module over a local ring A, F; and F» be two
finitely generated free A-modules of the same rank equipped with A-linear epimorphisms
7; + F; = N (i = 1,2). Then there exists an isomorphism v : F; — F5 such that
T9 0 y12 = T1. Applying this general property to our case, the existence of «y follows.

Let Q:==J@®L and ¢ :=yo (E-idy+idg) : J® L — J @ L. Then the pair (Q, ¢)
is a Breuil O-window relative to & — R and we have a commutative diagram

Q —— M

(3.7) & |

(o)
Q) 1y A)

Hence 7 is a surjection from (Q, ¢) to (M, ¢). It is clear that the kernel (@', ¢') is a Breuil
O-window relative to & — R. The lemma follows. g

Corollary 3.26. If (M, ¢) is a Breuil O-module relative to & — R, then the quotient
M) /¢(M) is an R-module of projective dimension at most one.

Proof. From Lemma 3.25, (M, ¢) is the cokernel of an isogeny of Breuil O-windows, i.e.,
we have a short exact sequence

0= (@) = (@,6) > (M, 6) - 0.
This induces an exact sequence
Coker(¢gy) — Coker(¢q) — Coker(¢nr) — 0.
The claim follows. O

Lemma 3.27. If (M, ¢) — (M, ) is a morphism of Breuil O-modules relative to & — R,
then it is the cokernel of a morphism of two exact complezes 0 — (Q',¢') = (Q, ) and
0= (Q,¢) = (Q,d) of Breuil O-windows.
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Proof. From Lemma 3.25, there exists a Breuil O-window (Q, qB) relative to & — R with a
surjection (Q, QB) — (M, g?)) Let Q =M XMQ be the fibre product. The functor L — L(?)
from G-modules to G-modules is exact and therefore respects fibre products. We obtain
the following commutative diagram

(@, 0) —— (M, 9)

(3.8) l l

(Q.0) — (M, 9)
As in the proof of Lemma 3.25, the kernels of the horizontal arrows are Breuil O-windows
relative to © — R. The lemma follows. O

3.5. w-divisible O-modules and special O-group schemes. In the rest of this paper,
we assume that p > 2 and O is the ring of integers of a finite extension of Q, with
uniformizer 7. First, we have the following result.

Theorem 3.28. Let O be the ring of integers of a finite extension of Q, with uniformizer
w. Let R be a local complete reqular Noetherian O-algebra with perfect residue field of
characteristic p. The category of m-divisible O-modules over R is equivalent to the category
of Breuil O-windows relative to & — R.

Proof. This is an immediate consequence of Theorem 3.13, Proposition 3.18 and [2, The-
orem 1.5]. O

Definition 3.29. A special O-group scheme over R is a finite flat commutative group
scheme which is the kernel of an isogeny of m-divisible O-modules over R. Write sGrp for
the category of special O-group schemes over R.

From the definition, a special O-group scheme is annihilated by a power of 7 and is of
g-power order.

Remark 3.30. By [3, Theorem 3.1.1], for a Noetherian local ring R with perfect residue
field of characteristic p, every finite flat commutative group scheme of p-power order over
R is the kernel of an isogeny of p-divisible groups over R. Hence, in the case O = Z,,
every finite flat commutative group scheme of p-power order over R is special.

Theorem 3.31. With the same setting as in Theorem 3.28, the category of special O-group
schemes over R is equivalent to the category of Breuil O-modules relative to & — R.

Proof. Let H be a special O-group scheme over R. By definition, H is the kernel of an
isogeny of w-divisible O-modules over R

0>H—>G —-G—D0.

Let (Q',¢') and (Q, ¢) be the Breuil O-windows relative to & — R which corresponds
to G’ and G respectively. Let (Q',¢') — (Q,¢) be the morphism corresponding to the
isogeny G’ — G. The cokernel of this map is annihilated by a power of 7. Therefore it is
an isogeny and the cokernel Mq/(H) = (M, ¢) is a Breuil O-module relative to & — R.

Assume that h : H — H; is a homomorphism of special O-groups. Write H; as the
kernel of an isogeny of m-divisible O-modules

0— Hy — G} — Gy —0.
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Let (Q), #}) and (Q1, ¢1) be the Breuil O-windows relative to & — R which correspond
to G and Gy respectively. Let (Q},¢}) — (Q1, ¢1) be the morphism corresponding to the
isogeny G| — G1. Embed H into G4 = G' & G by (1,h) and define Gy = G4/H. We
obtain two morphisms G’ - G5 — G. They induce morphisms of short exact sequences

0 —— H G > G 0
[ | [
(3.9) 0 — H GY G2 0
L | L
0 —— H; G G1 0

~Y

The upper half of the diagram is a quasi-isomorphism and induces an isomorphism M/ (H) &
Mg, (H). This shows that Mg/(H) is independent of the isogeny, and we denote it by
M(H). Moreover, the diagram induces a morphism M(H) — M(H;). It is easy to see that
M is an additive functor.

Next, we construct an additive functor M +— H(M) from Breuil O-modules to special
O-groups. Each M is the cokernel of an isogeny of Breuil O-windows Q' — @, and H(M)
is defined to be the kernel of the associated isogeny of w-divisible O-modules. By a similar
argument as above, H is a well defined additive functor. Also, from the construction, it is
easy to check that H and M are inverse of each other. The theorem follows. O

3.6. Duality. Let (Q, ¢) be a Breuil O-window relative to & — R. The dual of (Q, ¢) is
the Breuil O-window (Q, ¢)! = (QV, 1), where Q¥ = Homg(Q,S) and ¢ : Q7)) — Q is
the unique &-linear map with ¥¢ = E. Here we identify (Q(?))Y and (QV)(?).

Let G be the O-module attached to the O-display (Wo(R), Io(R),¥,V™"). Let Gz
be the 7"-torsion of G. For a m-divisible O-module G over R, the Serre O-dual (or special
O-dual) G of G is defined in the same way as the Serre dual of G, by using G and G[7"]
instead of G, and pyn = Gy [p"]. Similarly, for H in sGrg, the Cartier O-dual HY of
H is defined in the same way as the Cartier dual of H, by using G[r| instead of p,. Let
W(G) be the Breuil O-window attached to G via the equivalence in Theorem 3.28.

Proposition 3.32. There is a functorial isomorphism \g : W(GV) = W(G)*.

Proof. By [2, Theorem 1.5], the equivalence between m-divisible O-modules over R and
Dieudonné O-displays over R is compatible with duality. The equivalence in Proposition
3.18 preserves duality. It suffices to show that the functors k. in Theorem 3.13 preserves
duality. By Lemma 2.10, it suffices to show that there exists a unit ¢ € W@(R), such
that ¢ '(¥¢c) = u. Note that u = 7 'k(cE) (Proposition 3.10 and Lemma 3.12) lies
in1+ W@(mR), the element u(Fu)(F u)--- converges in W@(R) = @WO(R/m’é). Let
= u®u)(F?u) - - -, the claim follows. O

Let (M, ¢) be a Breuil O-module relative to & — R. The dual (M, ¢)! of (M, ¢) is the
Breuil O-module (M*, ¢*), where M* = Extg (M, &), ¢* is determined by Corollary 3.21
(cf. [22, Section 2]). Then we have the following result.

Proposition 3.33. Let H be an object in sGrr. There is a functorial isomorphism Ay :
M(HY) = M(H).
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Proof. Let H be the kernel of the isogeny of m-divisible O-modules G’ — G. Then M(H)
is the cokernel of Q' — @, where Q' and @ are Breuil O-windows corresponding to G' and
G’ respectively. Thus M(H)! is the cokernel of Q' — (Q’)!. On the other hand, H" is
the kernel of G¥ — (G’)Y. By Proposition 3.32, we have the isomorphism Ay : M((HY) 2
M(H)!. This isomorphism is independent of the choice of G’ and functorial in H. The
proposition follows. O

For the application in next section, it is convenient to use contravariant Breuil O-
windows and contravariant Breuil O-modules ([22, Section 2]).

Definition 3.34. A contravariant Breuil O-window relative to & — R is a pair (Q, ¢),
where Q is a free G-module of finite rank and ¢ : Q9 — Q is an S-linear map whose
cokernel is annihilated by E.

A contravariant Breuil O-module relative to & — R is a pair (M, ¢), where M is a
finitely generated G-module annihilated by a power of 7 and of projective dimension at
most one, and ¢ : M) — M is an S-linear map whose cokernel is annihilated by E.

The category of Breuil O-windows relative to & — R (respectively Breuil O-modules
relative to & — R) is equivalent to the category of contravariant Breuil O-windows relative
to & — R (respectively contravariant Breuil O-modules relative to & — R) by taking dual
objects.

4. AN APPLICATION

Using the theory of Breuil modules, Vasiu and Zink [22] proved some boundedness
results for finite flat group schemes over discrete valuation rings of mixed characteristic.
With the results proved in Section 3, we now generalize the results in [22] to the case of
special O-group schemes.

4.1. Setup. Let p > 2 be a prime number. Let O be the ring of integers of a finite
extension of Q, with uniformizer 7© and residue field F,. Let R be a complete regular
discrete valuation ring of mixed characteristic (0, p) with fraction field K and residue field
k. Assume that R is an O-algebra. We view canonically R as a Wp(k)-algebra, which as
a Wo(k)-module is free of rank e. Here e is the ramification degree of R over O.

Let 6 = Wo(k)[[u]] and &,, = &/n"&. Let

E:=Eu) =uf+ac1u* 4 +ag € Wo(k)[u]

be the Eisenstein polynomial associated with a uniformizer p of R. We have a Wy (k)-
epimorphism & — R with kernel £& which maps u to the fixed uniformizer.

Let BrModg,r be the category of contravariant Breuil O-modules relative to & — R.
Let BrModl6 /R be the full subcategory of BrModg,r whose objects are pairs (M, ¢) with

M annihilated by 7. If (M, ¢) is an object of BrModé/R7 then M is a free G1-module of
finite rank. In the following, a Breuil O-module means a contravariant Breuil O-module.

Let sGrg be the category of special O-groups over R. Let sGr}% be the full subcategory
of sGrr whose objects are annihilated by w. Applying the results in Section 3, we have
the following proposition.

Proposition 4.1. There exists a contravariant functor B : sGrr — BrModg, g which
is an antiequivalence of categories. It is O-linear and takes short exact sequences (in the
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category of abelian sheaves in the faithfully flat topology of Spec R) to short exact sequences
(in the category of &-modules with Frobenius maps).
The restriction of B induces an antiequivalence B : sGrk — BrModlg/R.

Definition 4.2. For an object G of sGrg, let o(G) € N be such that ¢°(¢) is the order of
G.
For (M, ¢) an object of BrModlg/R, the rank of (M, ¢) is the rank of M as a free

G1-module.

Remark 4.3. If G is an object of sGrk, then by definition, the rank of B(G) is o(G).
Let H be an object of sGrr. Assume that 7" annihilates H, then we have a chain of
natural epimorphisms

H — H/H[rx] - H/H[r? — --- — H/H[z"] = {0}.
This induces a chain of Breuil O-modules
0= (Mna¢n) - (Mn,1,¢n,1) c---C (M07¢0) = (M7 Qb),

whose quotient factors are objects of BrMod%5 /R Then we can compute the order ¢°
of H via the formula

(H)

o(H) =o(M, ¢) := ZRankGl(Mifl/Mi) = Lengthg  (M(xr)).
=1

The following proposition corresponds to [22, Proposition 1]. The proof is similar. We
give details here for completeness.

Lemma 4.4. Let f : G — H be a morphism of special O-group schemes. Let g := B(f) :
B(H) = (M,¢) — B(G) = (N,v¢). Then the following claims hold.
(1) The morphism fx : Gx — Hg is a closed embedding if and only if the cokernel of
g: M — N is annihilated by some power of u.
(2) The morphism fx : Gx — Hy is an epimorphism if and only if the map g : M —
N is a monomorphism.
(3) The morphism fx : Gx — Hy is an isomorphism if and only if the map g : M —
N is injective and the cokernel of g is annihilated by some power of u.

Proof. We prove the first statement. Let N = Coker(g). Assume that fr is not a closed
embedding, then there exists a nontrivial flat closed subgroup Gg of G, which is contained
in the kernel of fx and which is annihilated by 7. Let B(Go) = (No,%o). Then Ny is free
over &1 with positive rank. On the other hand, B takes short exact sequences to short
exact sequences, we have an epimorphism N — Ny and N is not annihilated by a power
of u.

Assume that N is not annihilated by a power of u, then Ny = N / 7N is not annihilated
by a power of u. As &1 = k[[u]] is a principal ideal domain, we have a short exact sequence

0— No — Ni — Ny — 0,

where Ny is the largest &i-submodule of N; annihilated by a power of u and Nj is a
free &1-submodule of positive rank. The map ¢ : N (@) — N induces a o-linear map

Yo - Néa) — Np. It is easy to see that the pair (Ny,tp) is an object of BrModé/R.
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Then by Proposition 4.1, there exists a nontrivial flat closed subgroup Gg of GG, which is
contained in the kernel of fx. Therefore, fx is not a closed embedding.

The second statement follows by a similar argument. Assume that fx is not an epimor-
phism, then there exists a nontrivial flat closed subgroup Hy of H, which is not contained
in the image of fx and which is annihilated by 7. The corresponding Breuil O-module
B(Hy) produces nontrivial elements in Ker(g) and the map g : M — N is not a monomor-
phism. On the other hand, assume that g : M — N is not a monomorphism, then the
kernel Ker(g) produces a nontrivial flat closed subgroup Hy of H which is not contained
in the image of fx. Thus fx is not an epimorphism.

The third statement follows from the first and the second. 0

4.2. Truncations. By a special truncated Barsotti-Tate O-group of level n over R, we
mean a Barsotti-Tate O-group of level n over R, which is the n"-torsion of a w-divisible
O-module. Let H be such a group. Let (M, ¢) := B(H). Then M is a free &,,-module of
finite rank h.

Lemma 4.5. There exist two bases (e1,--- ,ep) and (vi,- -+ ,vy) of M, such that
' ¢(1®e;) = Ev; (mod vgyr,- - ,vp) i=1,--,d,

for some integer d.

Proof. Since H is special, we may assume that H = H[r"] for some 7-divisible O-module
‘H. The normal decomposition of the Breuil O-window associated with H induces a direct
sum decomposition M =T @ L into free &,-submodules, such that T is free of rank d and
Im(¢) = ET & L. Consider the composition

M 227 p@ &y (M@

projection M/T — I
All the arrows are surjective after tensoring with the residue field k. By Nakayama Lemma,
there exists a basis (e1,--- ,ep) of M, such that the images of p(1®e;) (i =d+1,---,h)
form a basis of M /T = L. Define v; = ¢(1®e;) for i =d +1,--- ,h. They form a basis
of L. Note that (¢(1 ®e;) : ¢ = 1,---,h) form a basis of ET & L, there exists a basis
(v1,- -+ ,vq) of T, which satisfies the required conditions. O

Lemma 4.6. Lett € Z>o. Let x € #M such that p(1 ® z) € %M Using the basis
(e1,--- ,en) in Lemma 4.5, write v = Z?:1 te; with a; € &y, Then for eachi=1,--- ,h,

Eo(a;) € ut VG, a; € (7" 1 u)S,, and 1a;(0) =0 € &,,.

Proof. By definition,

d
sion=3"Dsnse+ Y “saee)
(4.2) izl i=d+1 )
_ Z O'f;;z)EvZ + Z (0'1(;511) + Z)\U U(?;)),U’L c tM’
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for some \;; € &,,. Thus for i € {1,--- ,d}, Eo(o;) € u'?V&,,. Moreover, for i > d,

utd utd utd

d d
Eg(ai) = E(Ul(;;i) + Z )\ijo(aj)) — Z )\ian(aj)'
j=1 j=1

Therefore, Eo(a;) € w4V, for alli =1, --- , h. The other two claims follow easily. [

Lemma 4.7. Lett € Z>o. Let N be an &,,-submodule of %M which contains M. Assume
that ¢ induces an S-linear map N@) — N. Then ntN C M.

Proof. We prove this by induction on ¢t. If ¢ = 0, the claim is trivial. Assume that
the lemma is true for ¢t — 1. Let x € N. Then by Lemma 4.6, 7z € Tl,lM Thus
7N C #M Applying induction to N’ := 71N + M C ﬁM, we get TN’ ¢ M.
Therefore, 7' N C M. The lemma follows. g

4.3. Some formulas. In this section, we prove the results corresponding to those in [22,
Section 3]. The motivations for these results are explained in [22]. Our arguments here
are entirely similar to those in [22]. In many cases, to give the proofs, we may just replace
the number p € Z in [22] with the number ¢ € Z and the uniformizer p € Z, with the
uniformizer w € O. For completeness, we give details in the following.

Assume that O is of degree rf over Z,, where r is the ramification degree and f is the
residue degree. Then ¢ = pf and ord,(p) = r. For € R, [z] denotes the maximal integer
with the property [z] < z.

Define m := ord,(e) = [M] Let a. = 1. Recall that E = Y7, a;u’ is the Eisenstein

f
polynomial of a uniformizer p of R. Define

Ep := Zaiui € Wo(k)[ul],
qli
and By = E — Ey € Wo(k)[ul.
If m =0, define 7(p) = 1 and ¢(p) = 0.
If m > 1, define 7(p) € Z>p U {oo} by
7(p) := ord,(F1) = min{ord,(a;) | i € {1,--- ,e — 1}\¢Z}.
If m > 1 and 7(p) < o0, let ¢(p) € {1, - ,e — 1}\¢Z be the smallest number such that

T(p) = Ordw(aL(p))'
For all m > 0, define

T = 7R := min{7(p) | p is a uniformizer of R}.
If 7 < 0o, which is always true as we show in next lemma, define
¢ = p :=min{¢(p) | p is a uniformizer of R with 7(p) = 7}.
Lemma 4.8. With the notation as above, T < o0.

Proof. If m = 0, then 7 = 1 by definition and the claim follows. Assume that m > 1.
Note that p is a uniformizer with Eisenstein polynomial F(u). Then another uniformizer
P/ = p+ 7 of R is the root of the Eisenstein polynomial E'(u) = E(u — 7) = > _, aju’.
Thus @/, ; = —me+ae_1. At least one of a,_1 and a’,_; is not divisible by 72+°rd=(¢). The
lemma follows. O
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Lemma 4.9. Let n,t € Z~o. Assume that q | e. Let
C=Cu) =ul+ cg1u?™ -+ cru + cg € Wol(k)[u]
be a Weierstrass polynomial (i.e., C —u® = 0 (mod 7)), such that qd < t and cy &

7" Wo (k). Assume that Ego(C) € (u',7)&. Then d = (n — 1)e/q and for each i €
{0,1,--- ,n — 1}, we have

(4.3) ordr(cie)=n—1i—1 and ordg(c;) >n—1i, for0<j< i<,
1 q

Moreover, t < ne.

Proof. Let ¢g = 1. Let v; = 0(¢;) € Wo(k) for 0 < i < d. Then

0(C) = yau®® + a0t 4 -+ yud + 0 € Wo (k) [ul.

For i ¢ {0,--- ,d}, define ¢; = 7; = 0. Note that ord,(¢;) = ord;(7;). To prove equation
(4.3), it suffices to prove it for ;. Moreover,

d+¢€
EoO'(C) = Z ﬁjqujq,
j=0

where
(4.4) Bjq = aovj + agyj-1 4+ acy-c.

By assumption, ord;(8j4) > n for jq¢ < t. In particular, ord,(8jq) > n for j < d. We
prove that

(4.5) ordﬂ(%%) =n—i—1 and ord;(y;)>n—i, for 0 <j< ig,
q

by induction on j. The case j = 0 is easy. The passage from j — 1 to j goes as follows.
Assume first (i—1)§ <j< ig for some integer i. By equation (4.4), apy; = Bjq— (agyj—1+
R aefyj_g). Each term on the right hand side has m-order strictly bigger than n — 4.
Thus, ord(v;) > n—1i+1—ord;(ap) =n —i.

In the case j = ig, aovie +aev(i—1)e = Bie = (agViz—1+ -+ Qe—gV14i-1) ). Each term
on the right hand side has m-order > n — ¢ + 1. Since ordw(aefy(i,l)i) =n—i<n—i+1,
we must have ord,r(ag%%) = n — ¢. This ends the induction.

If d is of the form i, then 0 = ordx(cq) =n —i—1and d = (n—1)¢. Suppose that
d is not of the form if. Assume that (i —1)¢ < d <, then 0 = ordq(cq) = n — i and

i > n. This implies ord(y(;_1)c) = n — i < 0, which contradicts to the assumption that

%
C is a Weierstrass polynomial.

Finally, as ¢ | e and d = (n —1)¢, Eoo(C) € (u!,7)& is a monic polynomial of degree
e + gd = ne. Thus we must have ¢ < ne. The lemma follows. O
Corollary 4.10. With the same notation as in Lemma 4.9, let | € {0,1,...,e — 1}. Let

By = Eo(u) = ul + bp_qul =t + - + byu + by € Wo(k)[u] be a Weierstrass polynomial of
degree 1. If we have Fyo(C) € (ul, )&, then | > t.
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Proof. If n = 1, then d = 0 and C = ¢y is a unit. The corollary follows. Assume that
n > 2. Write
l+qd

EQU(C) = Z (5,~ui,
=0

where
0 =70+ bi—gy1 + -+ bV
q q
Forie {1,---, [é}}, we have ord,(y;) > n — 1 by equation (4.5). Thus ord(bj—iqvi) > n.
On the other hand, ord,(y)) =n — 1. Thus ord,(§;) =n—1and [ > ¢. O

The following proposition corresponds to [22, Proposition 2|, which is the key to the
computation.

Proposition 4.11. Let n and t be positive integers. Let C = C(u) € & be a power series
whose constant term is not divisible by ©". Assume that

Eo(C) € (u',m)&.
If 7(p) = o0, then t < me. If T(p) < oo, then
t < min{7(p)e + t(p), ne}.

Moreover, if m = 0, then we have 1o (C) € (ul, 7™)&; if m > 1, then we have 7™ P 1o (C) €
(ut, 7)&.
In particular, if m > 1 and the content of C is 1, then 7(p) +1 > n.

Proof. Since o(u) = u?, without loss of generality, we may assume that C' is a polynomial
of degree d with dg < t. Each term of o(C) has degree divisible by ¢, Eyo(C) and E10(C)
do not contain monomials of the same degree. Therefore, Fo(C) € (u,7")& implies
Eyo(C) € (u!,7")& and E10(C) € (ul,7")&.

Consider the case m = 0, i.e. ¢{e. In this case, 7 ! Ej is a unit in the ring &. There-
fore, 7o (C) € (u',7")&. By our assumption on the degree of C, 7o(C) = 0 (mod 7™).
Moreover, By — u® = 0 (mod 7), u¢s(C) € (u',7")&. As the constant term of C' is not
divisible by 7", we must have t < e = min{7(p)e + ¢(p), ne}.

Assume now that ¢ | e. By Weierstrass preparation theorem, we may assume that C'is
a monic polynomial of degree d such that C' —u? =0 (mod 7). Indeed, if ¢, the content of
C, is greater than 0, then we may just replace the pair (C,n) by the pair (C’,n—c), where
C" = 7w ¢C, and prove the proposition for (C’,n—c). It suffices to show that 7(p)+1 > n.
As in [22], assume that 7(p) + 1 < n and it suffices to show that 7(p) + 1 = n.

As 7(p) = ord,(E1), by Weierstrass preparation theorem, we may write

E1 = WT(p)EQH,

where 0 € G is a unit and Fa(u) € Wo(k)[u] is a Weierstrass polynomial of degree ¢(p) < e.
The property E10(C) € (u!,7™)& implies that

Eyo(C) € (ut, 7" ")s.

Note that 7(p)§ < (n—1)¢ = d and ¢q = 1, we consider the monic polynomial

=3
q

Ch = Cl(u) =y + cd,lud_l + -+ Cr(p) uT(p)§ S W@(k)[u]

£
q



BREUIL O-WINDOWS AND #-DIVISIBLE O-MODULES 27

By Lemma 4.9, ord.(cj) > n — 7(p) for j < 7'(,0)5. Thus C — Cy € 7"~ 7(P)&. Therefore,
Eyo(Cy) € (ut, n""P)s.
Write C = u P )56’2. Then the constant term of Cy is ¢
7"~7(P) Therefore, as t > qd = (n — 1)e > 7(p)e,
Ey0(Cy) € (ut7Pe zgn=(P))a.
Similarly, since Eqo(Cy) = Equ~ "0 (C) — Egu~"Peq(C — C),
Eoo(Cy) € (ut7Pe zn=7(P))a.

Applying Corollary 4.10 to the quintuple (¢t — 7(p)e, Co, Ey, E2,n — 7(p)) instead of the
quintuple (¢,C, Ey, E2,n), we obtain that «(p) = deg(FE2) >t — 7(p)e. Since t(p) <e—1
and n > 7(p) + 1, it is easy to see that ¢t < 7(p)e + ¢(p) = min{7(p)e + t(p),ne}. The
property (n — 1)e = qd < t implies n < 7(p) + 1. Thus n = 7(p) + 1 and the proposition
follows. O

(p) %> which is not divisible by

4.4. The number s. For a uniformizer p of R, define

T(p)e+1t
) = P2 e 2 0 foc.
By Lemma 4.8, there exists p, such that ¢(p) is finite.
Let € = 0 (respectively € = 1) if m = 0 (respectively m > 1). For all nonnegative

integers i, define
TE+ 1L

si:=1i(T+¢€) and ¢; := [7((] N

].
Thus t;4+1 = [El] (an easy computation) and
to = min{¢(p) | p is a uniformizer of R}.

Define the number s € Z>o which only depends on R by

s =sp:=min{s; +1t; | i € Z>o}.
Let z € Z>( be the smallest number with the property s, +t, = s.

With the above definition, we have
O=sp<s1<---<szandtg>t1 >--->1t,>0.

Theorem 4.12. With the notation as above, let G and H be two special O-groups over
R. For each homomorphism f : G — H whose generic fiber fx : Gxg — Hg s an
isomorphism, there exists a homomorphism [’ : H — G such that f' o f = 7°idg and
fof =mn%idy. Therefore the special fiber homomorphism fi. : G — Hy. has a kernel and
a cokernel annihilated by 7°.

Proof. If there exists f': H — G such that fo f/ = w%idy, then f' o f = 7%id¢ as this is
true on the generic fiber. The claim on the special fiber homomorphism follows easily.
Choose an epimorphism &y : : H — H from a special truncated Barsotti-Tate O- group
H. Let G = G xy H be the fiber product in the category sGrg. Let f:G — H be
the corresponding morphism. Then fK is an isomorphism. Assume that there exists a
homomorphism f’ : H — G such that fo f/ =« *idj. Then &g o f' is zero on Ker(£x)
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because this is true for the generic fibers. Thus there exists f' : H — G such that
floéyg = Egof'. Therefore fof'ofy = foégof =&gofof =n%¢y and fo f' = n¥idy.

By the above discussion, to prove the existence of f/, we may assume that f = f
and H = H is a special truncated Barsotti-Tate O-group of level n > s. We translate
the problem in terms of Breuil O-modules. Let B(H) = (M, ¢) and B(G) = (N,v).
By Proposition 4.4, f induces an &-linear monomorphism M < N whose cokernel is
annihilated by some power u!. Assume that t is the smallest natural number with this
property. If £ = 0, then f is an isomorphism. Thus we assume that ¢ > 0. The existence

of f/: H— G is equivalent to the inclusion

N C M.
Now we prove by induction that, for j € {0,--- ,z}, 7% N C U%M For the base case
j =0, it suffices to show that t < t5. Choose € N such that u!~'x ¢ M. Write
h
x = Z %ez,
i=1
where (e1,--- ,ep) is an &,-basis of M as in Lemma 4.5. Then by Lemma 4.6, Eo(«;) €

ut(q_l)Gn for 1 <4 < h. By the minimality of ¢, there exists 1 < ig < h, such that a,
is not divisible by u. Let C = C(u) € & be such that its reduction modulo 7" is a,.
The constant term of C' is not divisible by 7" and Eo(C) € (u!9~1) 7")&. Applying
Proposition 4.11, we see that ¢(¢ — 1) < min{re 4 ¢,ne}. Thus ¢t < ¢y by definition of .

If 0 < j < z, the passage from j — 1 to j goes as follows. The induction hypothesis
says that m%-1 N C ut]%lM Let ;1 € {0,--- ,tj_1} be the smallest number such that

75N C M. If l;—1 =0, then 7%-'N C M. Thus 7% N C %N C M C U%M

uli—1

Assume now that [;_; > 1. Choose y € m%-1N. Write

h
S
Yy = i €i,
=1

where 1; € 6,\uS,, and n; € {0,---,l;_1}. We want to show that 77Ty € %M For

tj
this, it suffices to show that 77tk € ﬁ@n for all i. If n; < t;, this is obvious. Assume
that n; > t; + 1. The inequality

ti_ ti_ 1 li_ 1
oty 4= [0 gy S Gl
q q q
implies that gn; — ;1 > 1. Let C; = C;(u) € & be such that its reduction modulo 7" is
ni. Applying Lemma 4.6, we have Eo(Cyuli-1—") € (u(@Db-1 77)&. This implies that

Eo(Cy) € (u®™~b-1 7M6& C (u, n")6.

The constant term of C; is not divisible by n™. Applying Proposition 4.11 to the pair
(Cy,qni — 1j—1) instead of (C,t), we get o (77 T¢C;) = 770 (C;) € (ud™i~b-1 7™)&. So we

_rli-1
may write 77 7¢C; = A; + B;, where A; € 7S and B; € u™ r I&. Thus
1 1 1

T+€£ -
u- 4
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This shows that 7% N C H%M and ends the induction.
Finally, applying Lemma 4.6, the inclusion 7% N C ﬁ@ implies 7 t4 N Cc M. In

particular, we may take j = z and obtain the inclusion 7° N C M. This finishes the proof
of the theorem. O

4.5. Some corollaries. In this section, we deduce several consequences of Theorem 4.12.
The corresponding results for p-divisible groups appear in [22, Section 1]. We refer to that
paper for more details on the history of these results. The idea of the proofs are the same
as in [22, Section 5.

If G is a w-divisible O-module over R, we denote by G[7n"] the schematic closure of
Gg|[m"] in G.

Corollary 4.13. With the same notation as in Theorem 4.12, if H is a special trun-
cated Barsotti-Tate O-group of level n > s, then the natural homomorphism f[x"%] :
G[m" %] — H[r""*] is an isomorphism.

Proof. Let f' : H — G be such that f o f/ = n%idyg. Then we have the following

commutative diagram

r—" ¢

\gf

On generic fibers we have Hg[r®] C Ker(f) ), thus H[7®] C Ker(f’). We obtain a second
commutative diagram

N[ P A——e

S

In the diagram, f” is a closed immersion because 7* is a closed immersion. Applying the
functor [7" %], we obtain a third commutative diagram

H/(H[)) — L G

x‘ lfl—ﬂ—ns.l

Hr"~#]

In this diagram, f”[7"*] is a closed immersion. It is then an isomorphism because the
domain and the range are finite flat group schemes of the same order. The diagonal map is
an isomorphism by the assumption on H. Therefore, the map f[#"*] is an isomorphism.
The corollary follows. O

Corollary 4.14 (Raynaud). Let G and H be special O-groups over R. Assume that
e<q—2. If Gg and Hg are isomorphic, then G and H are isomorphic.

Proof. Since e < ¢ — 2, we have m = ¢ =0, 7 = 1. In this case

=0

TE+ 1L
q—1

s <[
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Thus s = 0. The corollary follows. O

Remark 4.15. In the case O = Z,, this is a classical result of Raynaud [18, Theorem 3.3.3].
It is proved by others with different methods. See [22, Section 1] for a detail list. The
condition e < p — 2 is necessary, as we may see from the fact that p, and Z/pZ have the
same generic fiber over Z,[(y], where (, is a p-th root of unity.

On the other hand, in the case of higher ramification, (i.e., eg > p — 1), if the group
Gk is endowed with a strict O-action and O is large, then there is still at most one way
to extend Gk to an integral model which also extends the O-action.

Corollary 4.16. Let h : Gx — Hg be a homomorphism over K. Then w®h extends to
a homomorphism G — H over R. Moreover, the kernel of the natural homomorphism
Ext!(H,G) — Ext'(Hy,Gr) is annihilated by 7°.

Proof. Let G be the schematic closure in G xr H of the graph of the morphism h. Let
i : G = G xp H be the corresponding closed embedding. We have a commutative diagram

(4.6) G— ' s GxzgH—2 L H
\Jf?l
G

Let o : G — G be such that o/ o v = 7° ids. Then the morphism pyoioa’ : G — H is
an extension of w°h.

Let v € Ker(Ext!(H,G) — Ext!(Hg,Gk)). Assume that it is represented by a short
exact sequence

(4.7) 0—-G—J—H—=0,
whose generic fiber splits. Let h : Hx — Jg be a homomorphism that is a splitting of
0—-Gg —Jg > Hg — 0.
Let g : H — J be an extension of m%h. Let
0—-G—Js—H—=0
be the pullback of (4.7) via 7*idg. Then by the universal property of pullback,

- i \
wj
p Js—— H
J widy
J—H

there exists a unique g5 : H — Jg, such that its composite with J; — J is g. Thus v = 0.
The corollary follows. O

Corollary 4.17. Assume that G and H are special truncated Barsotti-Tate O-groups of
leveln > s. Let h: G — Hg be a homomorphism. Then the restriction homomorphism
h[n" %] : Gg[r" %] — Hg[n"*] extends to a homomorphism G[x" ] — H[r""*].
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Proof. Let h' : G — H be an extension of m°h : G — H as in Corollary 4.16. It induces
a homomorphism G[n"~*] = G/G[r*] — H|[r" %] whose generic fiber is h[n"~*]. O

Corollary 4.18. Assume that n > 2s. Let H be a special truncated Barsotti-Tate O-
group of level n over R. Let G be a special O-group such that we have an isomorphism
h: Gy — Hy. Then the quotient group scheme G[n"~%]/G[r*] is isomorphic to H[r"~2*]
and thus it is a truncated Barsotti-Tate O-group of level n — 2s.

Proof. The proof is exactly the same as the proof of [22, Corollary 4]. a

Corollary 4.19 (Tate). Let X and Y be m-divisible O-modules over R. Then the natural
map

Homp(X,Y) — Homop (X, Yi)
s a bijection.

Proof. Let f € Hom(Xg,Yrk). For any integer n > 0, it induces a morphism f[7"] :
Xk[r"] = Yg[r"]. If n > s, the morphism f[n""®] : Xg[n" %] — Y [n"*] extends to
a morphism g,—s : X[1"7°] — Y[n""%] by Corollary 4.17. Taking limit for n > s, we
obtain a morphism ¢ : X — Y, which lifts the morphism f : Xz — Yx. The corollary
follows. OJ
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