p-Divisible Groups and Reciprocity Laws

Ricky Magner

May 15, 2020

Ricky Magner *p*-Divisible Groups and Reciprocity Laws

▲ 同 ▶ → 三 ▶

- p-Divisible Groups mod p
- 3 Deforming *p*-Divisible Groups
- 4 Recent Developments

Table of Contents

- p-Divisible Groups mod p
- Oeforming p-Divisible Groups
- 4 Recent Developments

A 3 b

Elliptic Curves

• We can think of an elliptic curve as the solutions to the equation $y^2 = x^3 + Ax + B$ for constants A and B.

▲ 同 ▶ → 三 ▶

Elliptic Curves

• We can think of an elliptic curve as the solutions to the equation $y^2 = x^3 + Ax + B$ for constants A and B.

• ex:
$$E: y^2 = x^3 - x$$
.

< 🗇 🕨 < 🖃 🕨

Elliptic Curves

- We can think of an elliptic curve as the solutions to the equation y² = x³ + Ax + B for constants A and B.
 ave E : x² = x³
- ex: $E: y^2 = x^3 x$.
- We have the addition law P + Q = R with identity element 0 at ∞:

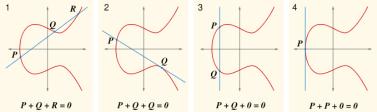


Figure: Group Law on E

< ロ > < 同 > < 三 > < 三 >

Elliptic Curves and Tori

 We can think about the C-points of E as forming a torus. In particular E(C) ≅ C/Λ for some lattice Λ ⊂ C.

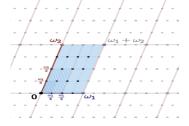


Figure: $E(\mathbb{C})$ as a torus

Elliptic Curves and Tori

 We can think about the C-points of E as forming a torus. In particular E(C) ≅ C/Λ for some lattice Λ ⊂ C.

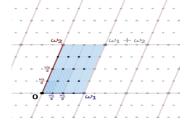


Figure: $E(\mathbb{C})$ as a torus

We can visualize the torsion points, i.e. those of finite order, this way. We write E[n] for the n-torsion. We see E[n] ≅ Z/n × Z/n.

Division Polynomials

• How do we find coordinates for the points in E[n] given $y^2 = x^3 + Ax + B$?

▲ □ ▶ ▲ □ ▶ ▲

Division Polynomials

- How do we find coordinates for the points in E[n] given $y^2 = x^3 + Ax + B$?
- Use rational functions for addition formula to compute $[n](x, y) = (x, y) + \cdots + (x, y)$ and solve for $[n](x, y) = \infty$.

< 同 ト < 三 ト < 三 ト

Division Polynomials

- How do we find coordinates for the points in E[n] given $y^2 = x^3 + Ax + B$?
- Use rational functions for addition formula to compute $[n](x, y) = (x, y) + \cdots + (x, y)$ and solve for $[n](x, y) = \infty$.
- **Example:** $E: y^2 = x^3 x$. Then [2](x, y) = (X, Y) for

$$X = (x^4 + 2x^2 + 1)/(4x^3 - 4x)$$

$$Y = (8x^6y - 40x^4y - 40x^2y + 8y)/(64x^6 - 128x^4 + 64x^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Division Polynomials

- How do we find coordinates for the points in E[n] given $y^2 = x^3 + Ax + B$?
- Use rational functions for addition formula to compute $[n](x, y) = (x, y) + \cdots + (x, y)$ and solve for $[n](x, y) = \infty$.
- **Example:** $E: y^2 = x^3 x$. Then [2](x, y) = (X, Y) for

$$X = (x^4 + 2x^2 + 1)/(4x^3 - 4x)$$

$$Y = (8x^6y - 40x^4y - 40x^2y + 8y)/(64x^6 - 128x^4 + 64x^2)$$

• So
$$(x, y) \in E[2] \setminus \{\infty\}$$
 if and only if $4x^3 - 4x = 0$, or $x = 0, \pm 1 \implies E[2] = \{\infty, (0, 0), (\pm 1, 0)\}$.

Division Polynomials (cont.)

• **Example:** $E: y^2 = x^3 - x$. Then [3](x, y) = (X, Y) for

$$X = (x^9 + 12x^7 + 30x^5 - 36x^3 + 9x)/$$

$$(9x^8 - 36x^6 + 30x^4 + 12x^2 + 1)$$

$$Y = (6x^{12}y - 132x^{10}y - 990x^8y + 552x^6y - 1110x^4y + 540x^2)$$

$$(162x^{12} - 972x^{10} + 1782x^8 - 648x^6 - 594x^4 - 108x^2 - 6)$$

イロト イポト イヨト ・

Division Polynomials (cont.)

• **Example:** $E: y^2 = x^3 - x$. Then [3](x, y) = (X, Y) for

$$X = (x^{9} + 12x^{7} + 30x^{5} - 36x^{3} + 9x)/$$

$$(9x^{8} - 36x^{6} + 30x^{4} + 12x^{2} + 1)$$

$$Y = (6x^{12}y - 132x^{10}y - 990x^{8}y + 552x^{6}y - 1110x^{4}y + 540x^{2})$$

$$(162x^{12} - 972x^{10} + 1782x^{8} - 648x^{6} - 594x^{4} - 108x^{2} - 6)$$

So (x, y) ∈ E[3]\{∞} if and only if 9x⁸ - 36x⁶ + 30x⁴ + 12x² + 1 = (3x⁴ - 6x² - 1)² = 0. Note this quartic is irreducible over Q, so these points have coordinates over a finite extension of Q.

< 同 > < 三 > < 三 > 、

Systems of *p*-Torsion

From the picture, we see that E[2] ⊂ E[4] ⊂ E[8] ⊂ ..., and that ∪_{n≥1}E[2ⁿ] is dense in E(ℂ). We write E[2[∞]] for the union of the E[2ⁿ]'s.

A (1) < (1) < (1) </p>

Systems of *p*-Torsion

- From the picture, we see that E[2] ⊂ E[4] ⊂ E[8] ⊂ ..., and that ∪_{n≥1}E[2ⁿ] is dense in E(ℂ). We write E[2[∞]] for the union of the E[2ⁿ]'s.
- More generally, the *p*-divisible group associated to *E* is

$$E[p^{\infty}] = \bigcup_{n \ge 1} E[p^n].$$

(b) (4) (2) (4)

Abelian Reciprocity for $\mathbb{Q}(i)$

Let K = Q(i) be the field of r + si with r, s ∈ Q. Fix a prime p, and let E : y² = x³ - x as before. Set L_n = K(x(E[pⁿ])), i.e. the extension by adjoining the x-coordinates of points in E[pⁿ] and L_∞ = K(x(E[p[∞]])).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Abelian Reciprocity for $\mathbb{Q}(i)$

Let K = Q(i) be the field of r + si with r, s ∈ Q. Fix a prime p, and let E : y² = x³ - x as before. Set L_n = K(x(E[pⁿ])), i.e. the extension by adjoining the x-coordinates of points in E[pⁿ] and L_∞ = K(x(E[p[∞]])).

Theorem

 L_n/K is a Galois extension with group

$$\operatorname{Gal}(L_n/K) \cong (\mathbb{Z}[i]/p^n)^{\times} = \operatorname{GL}_1(\mathbb{Z}[i]/p^n).$$

Furthermore, if M/K is a finite Galois extension with abelian Galois group (unramified away from p), then $M \subseteq L_{\infty}$.

イロト イポト イヨト イヨト

Abelian Reciprocity for $\mathbb{Q}(i)$

• Let $K = \mathbb{Q}(i)$ be the field of r + si with $r, s \in \mathbb{Q}$. Fix a prime p, and let $E: y^2 = x^3 - x$ as before. Set $L_n = K(x(E[p^n]))$, i.e. the extension by adjoining the x-coordinates of points in $E[p^n]$ and $L_{\infty} = K(x(E[p^{\infty}]))$.

Theorem

 L_n/K is a Galois extension with group

$$\operatorname{Gal}(L_n/K) \cong (\mathbb{Z}[i]/p^n)^{\times} = \operatorname{GL}_1(\mathbb{Z}[i]/p^n).$$

Furthermore, if M/K is a finite Galois extension with abelian Galois group (unramified away from p), then $M \subseteq L_{\infty}$.

• Under the Langlands philosophy, theorems relating Galois groups to Lie groups are called *reciprocity* laws. Ricky Magner

Table of Contents

- p-Divisible Groups mod p
- Oeforming p-Divisible Groups
- 4 Recent Developments

-∢ ≣ ▶

General *p*-Divisible Groups

Suppose we start with an elliptic curve mod p, i.e.
 E: y² ≡ x³ + Ax + B mod p. Then the group law still works on Z/p points, and we can talk about E[pⁿ] as before. We get the p-divisible group E[p[∞]].

< 同 > < 三 > < 三 >

General *p*-Divisible Groups

- Suppose we start with an elliptic curve mod p, i.e.
 E: y² ≡ x³ + Ax + B mod p. Then the group law still works on Z/p points, and we can talk about E[pⁿ] as before. We get the p-divisible group E[p[∞]].
- In fact, if A is an abelian variety (a space defined by polynomial equations with a group law), then we can form A[p[∞]] analogously.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

General *p*-Divisible Groups

- Suppose we start with an elliptic curve mod p, i.e.
 E: y² ≡ x³ + Ax + B mod p. Then the group law still works on Z/p points, and we can talk about E[pⁿ] as before. We get the p-divisible group E[p[∞]].
- In fact, if A is an abelian variety (a space defined by polynomial equations with a group law), then we can form A[p[∞]] analogously.

Abstract *p*-divisible group

We can define an abstract *p*-divisible group \mathbb{X} to be a sequence \mathbb{X}_n behaving like the examples above; a bit more precisely, \mathbb{X}_n should a group defined by polynomials with a surjective multiplication by *p* map $[p] : \mathbb{X}_{n+1} \to \mathbb{X}_n$.

Reduction mod p

When working¹ mod *p*, these can be characterized succinctly. A general X can be made out of "simple" building blocks, i.e. X = ⊕_iX_i for some simple *p*-divisible groups X_i.

¹We should technically work over $\overline{\mathbb{F}}_p$, the algebraic closure of $\mathbb{Z}/p \ge 22 \sqrt{2}$ Ricky Magner *p*-Divisible Groups and Reciprocity Laws

Reduction mod p

When working¹ mod *p*, these can be characterized succinctly. A general X can be made out of "simple" building blocks, i.e. X = ⊕_iX_i for some simple *p*-divisible groups X_i.

Theorem (Dieudonne-Manin)

The simple p-divisible groups mod p are of the form \mathbb{X}_{λ} for $\lambda \in \mathbb{Q}$. The endomorphism ring of maps $\mathbb{X}_{\lambda} \to \mathbb{X}_{\lambda}$ is D_{λ} , the division algebra over \mathbb{Q}_{p} of invariant λ .

¹We should technically work over $\overline{\mathbb{F}}_p$, the algebraic closure of $\mathbb{Z}/p \equiv \Im \mathbb{Q}$ Ricky Magner *p*-Divisible Groups and Reciprocity Laws

Reduction mod p

When working¹ mod *p*, these can be characterized succinctly. A general X can be made out of "simple" building blocks, i.e. X = ⊕_iX_i for some simple *p*-divisible groups X_i.

Theorem (Dieudonne-Manin)

The simple p-divisible groups mod p are of the form \mathbb{X}_{λ} for $\lambda \in \mathbb{Q}$. The endomorphism ring of maps $\mathbb{X}_{\lambda} \to \mathbb{X}_{\lambda}$ is D_{λ} , the division algebra over \mathbb{Q}_{p} of invariant λ .

Example: If X = E[p[∞]], then either X = X_{1/2} or X = X₀ ⊕ X₁ depending on if E is supersingular or not. In the former case, D_{1/2} is the p-adic quaternion algebra.
 ¹We should technically work over F_p, the algebraic closure of Z/p ≥ occ

Table of Contents

- 2 p-Divisible Groups mod p
- 3 Deforming *p*-Divisible Groups
- 4 Recent Developments

Deformations to Characteristic 0

 Let X = X_λ be a simple *p*-divisible group mod *p* as before. We consider possible ways to "lift" X to characteristic 0.

Deformations to Characteristic 0

- Let X = X_λ be a simple *p*-divisible group mod *p* as before. We consider possible ways to "lift" X to characteristic 0.
- We say a pair (X, ρ) is a deformation of X if X is a p-divisible group over Z_p, and ρ : X̄ → X is an isomorphism².

²Technically this should be a quasi-isogeny Ricky Magner p-Divisible Groups and Reciprocity Laws

Deformations to Characteristic 0

- Let X = X_λ be a simple *p*-divisible group mod *p* as before. We consider possible ways to "lift" X to characteristic 0.
- We say a pair (X, ρ) is a deformation of X if X is a p-divisible group over Z_p, and ρ : X → X is an isomorphism².
- One can think of X over Z_p as a sequence of p-divisible groups X_n over Z/pⁿ compatible with reduction.

Rapoport-Zink Spaces

Theorem

The set of deformations

 $\mathcal{M}_{\lambda} = \{(X, \rho) : \text{ a deformation of } \mathbb{X}_{\lambda}\}$

can be given the structure of a p-adic manifold. In particular, if $\lambda = 1/h$, then \mathcal{M}_{λ} is an (h-1)-dimensional p-adic disk.

< 🗇 🕨 < 🖃 🕨

Rapoport-Zink Spaces

Theorem

The set of deformations

 $\mathcal{M}_{\lambda} = \{(X, \rho) : \text{ a deformation of } \mathbb{X}_{\lambda}\}$

can be given the structure of a p-adic manifold. In particular, if $\lambda = 1/h$, then \mathcal{M}_{λ} is an (h-1)-dimensional p-adic disk.

 We see there's a natural action of D[×]_λ on M_λ given by γ · (X, ρ) = (X, γ ∘ ρ) for γ ∈ D[×]_λ. This action is compatible with the geometric structure.

< ロ > < 同 > < 三 > < 三 >

Level Structure

• Let $n \ge 1$. Then if X is a deformation of X with $\lambda = d/h$, we have $X[p^n] \cong (\mathbb{Z}/p^n)^h$.

Level Structure

- Let $n \ge 1$. Then if X is a deformation of X with $\lambda = d/h$, we have $X[p^n] \cong (\mathbb{Z}/p^n)^h$.
- Let $\mathcal{M}^n_{\lambda} = \{(X, \rho, \phi) : (X, \rho) \text{ a deformation of } \mathbb{X} \text{ and } \phi : X[p^n] \cong (\mathbb{Z}/p^n)^h\}.$

Level Structure

- Let $n \ge 1$. Then if X is a deformation of X with $\lambda = d/h$, we have $X[p^n] \cong (\mathbb{Z}/p^n)^h$.
- Let $\mathcal{M}_{\lambda}^{n} = \{(X, \rho, \phi) : (X, \rho) \text{ a deformation of } \mathbb{X} \text{ and } \phi : X[p^{n}] \cong (\mathbb{Z}/p^{n})^{h}\}.$
- Then \mathcal{M}^n_{λ} also has the structure of a *p*-adic manifold, with maps $\mathcal{M}^{n+1}_{\lambda} \to \mathcal{M}^n_{\lambda}$ via reduction.

周 ト イ ヨ ト イ ヨ ト

Level Structure

- Let $n \ge 1$. Then if X is a deformation of X with $\lambda = d/h$, we have $X[p^n] \cong (\mathbb{Z}/p^n)^h$.
- Let $\mathcal{M}^n_{\lambda} = \{(X, \rho, \phi) : (X, \rho) \text{ a deformation of } \mathbb{X} \text{ and } \phi : X[p^n] \cong (\mathbb{Z}/p^n)^h\}.$
- Then \mathcal{M}^n_{λ} also has the structure of a *p*-adic manifold, with maps $\mathcal{M}^{n+1}_{\lambda} \to \mathcal{M}^n_{\lambda}$ via reduction.
- Now we have an action of GL_h(ℤ/pⁿ) on Mⁿ_λ via g · (X, ρ, φ) = (X, ρ, g ∘ φ).

< 同 > < 三 > < 三 >

Local Langlands Correspondence

• The maps $\mathcal{M}_{\lambda}^{n+1} \to \mathcal{M}_{\lambda}^{n}$ induce maps on cohomology $H^{*}(\mathcal{M}_{\lambda}^{n}) \to H^{*}(\mathcal{M}_{\lambda}^{n+1})$, and the direct limit, denoted $H^{*}(\mathcal{M}_{\lambda}^{\infty})$, has an action of $\operatorname{GL}_{h}(\mathbb{Q}_{p}) \times D_{\lambda}^{\times} \times W_{\mathbb{Q}_{p}}$, after "passing to generic fiber."

伺 ト イヨト イヨト

Local Langlands Correspondence

- The maps $\mathcal{M}_{\lambda}^{n+1} \to \mathcal{M}_{\lambda}^{n}$ induce maps on cohomology $H^{*}(\mathcal{M}_{\lambda}^{n}) \to H^{*}(\mathcal{M}_{\lambda}^{n+1})$, and the direct limit, denoted $H^{*}(\mathcal{M}_{\lambda}^{\infty})$, has an action of $\mathrm{GL}_{h}(\mathbb{Q}_{p}) \times D_{\lambda}^{\times} \times W_{\mathbb{Q}_{p}}$, after "passing to generic fiber."
- For a "nice" representation π of GL_h(Q_p), we can take π-isotypic components to get:

・ 同 ト ・ ヨ ト ・ ヨ ト

Local Langlands Correspondence

- The maps $\mathcal{M}_{\lambda}^{n+1} \to \mathcal{M}_{\lambda}^{n}$ induce maps on cohomology $H^{*}(\mathcal{M}_{\lambda}^{n}) \to H^{*}(\mathcal{M}_{\lambda}^{n+1})$, and the direct limit, denoted $H^{*}(\mathcal{M}_{\lambda}^{\infty})$, has an action of $\mathrm{GL}_{h}(\mathbb{Q}_{p}) \times D_{\lambda}^{\times} \times W_{\mathbb{Q}_{p}}$, after "passing to generic fiber."
- For a "nice" representation π of GL_h(Q_p), we can take π-isotypic components to get:

Theorem

Let $\lambda = 1/h$. Then

$$H^*(\mathcal{M}^\infty_\lambda)[\pi] \cong \rho_\pi \boxtimes \sigma_\pi$$

where ρ_{π} and σ_{π} are representations of D_{λ}^{\times} and $W_{\mathbb{Q}_{p}}$ respectively associated to π with arithmetic compatibilities.

• In other words, the cohomology of $\mathcal{M}_{\lambda}^{\infty}$ gives a geometric reason for the existence of a reciprocity law $\pi \rightleftharpoons \sigma_{\pi}$ relating representations of the Lie group $\mathrm{GL}_{h}(\mathbb{Q}_{p})$ and the Galois group $W_{\mathbb{Q}_{p}}$!

< 🗇 🕨 < 🖃 🕨

Table of Contents

- p-Divisible Groups mod p
- Oeforming p-Divisible Groups
- 4 Recent Developments

→ < ∃ →</p>

Mixed Characteristic Shtukas

• In general, given an *h*-tuple $\mu = (1, 1, ..., 0, 0)$ of 0's and 1's, and $\lambda = 1/h$, one can define a space $\mathcal{M}^{\infty}_{\lambda,\mu}$ so that $\mu = (1, 0, ..., 0)$ agrees with above.

• • = = • • = =

Mixed Characteristic Shtukas

- In general, given an *h*-tuple μ = (1, 1, ..., 0, 0) of 0's and 1's, and λ = 1/h, one can define a space M[∞]_{λ,μ} so that μ = (1, 0, ..., 0) agrees with above.
- Scholze and Weinstein reinterpreted the space $\mathcal{M}_{\lambda,\mu}^{\infty}$ in terms of a space of "shtukas" $\operatorname{Sht}_{\lambda,\mu}$ on the Fargues-Fontaine curve, i.e. certain maps of rank *h* vector bundles on the curve compatible with a linear algebraic condition depending on μ .

< 同 > < 三 > < 三 >

Mixed Characteristic Shtukas

- In general, given an *h*-tuple $\mu = (1, 1, \dots, 0, 0)$ of 0's and 1's, and $\lambda = 1/h$, one can define a space $\mathcal{M}_{\lambda,\mu}^{\infty}$ so that $\mu = (1, 0, \dots, 0)$ agrees with above.
- Scholze and Weinstein reinterpreted the space $\mathcal{M}^{\infty}_{\lambda,\mu}$ in terms of a space of "shtukas" $\operatorname{Sht}_{\lambda,\mu}$ on the Fargues-Fontaine curve, i.e. certain maps of rank *h* vector bundles on the curve compatible with a linear algebraic condition depending on μ .
- The condition on μ makes sense for any tuple, so $Sht_{\lambda,\mu}$ generalizes the old Rapoport-Zink spaces with infinite level structure.

< ロ > < 同 > < 回 > < 回 > .

Mixed Char Shtukas (cont.)

Let r_μ : GL_h → GL(V) be the representation of GL_h corresponding to the tuple μ.

→ < ∃ →

Mixed Char Shtukas (cont.)

- Let r_μ : GL_h → GL(V) be the representation of GL_h corresponding to the tuple μ.
- One expects a generalization of the Kottwitz conjecture:

Conjecture

For π a "nice" representation of $\operatorname{GL}_h(\mathbb{Q}_p)$,

$$H^*(\operatorname{Sht}_{\lambda,\mu})[\pi] \cong \rho_{\pi} \boxtimes r_{\mu} \circ \sigma_{\pi},$$

with ρ_{π} and σ_{π} representations of D_{λ}^{\times} and $W_{\mathbb{Q}_{p}}$ as before.

< ロ > < 同 > < 三 > < 三 >

Thanks for listening!

・ロト ・ 同ト ・ ヨト ・

æ

э