Solvability in Uniquely Divisible Groups[HLR]

Chris J. Hillar, Lionel Levine and Darren Rhea
MSRI, MIT, UC Berkeley

Uniquely Divisible Groups

- A group G is called uniquely divisible if for every $B \in G$ and each positive integer m, there exists a unique $X \in G$ such that

$$
X^{m}=B .
$$

- Examples:
- the group of positive units of a real closed field - unipotent matrix groups
- noncommutative power series with unit constant term.
- A word equation is an expression of the form

$$
w(X, A)=B
$$

where w is a finite word in the alphabet $\{X, A\}$
$\bullet A, B \in G$ are coefficients, and $X \in G$ is the unknown.

The Word Polynomial

- Given a word

$$
w=A^{a_{0}} X A^{a_{1}} X \cdots A^{a_{n-1}} X
$$

we define
$P_{w}(x, y)=y^{a_{0}}+x y^{a_{0}+a_{1}}+x^{2} y^{a_{0}+a_{1}+a_{2}}+\cdots+x^{n-1} y^{a_{0}+\cdots+a_{1}}$

- If u and w are words in the alphabet $\{X, A\}$, the composition $u \circ v$ is the word obtained by replacing each occurrence of the letter X in u by the word w. Lemma 5.1. (Word Polynomial Of A Composition) Let m, n be respectively the number of letters in w equal to A, X. Then

$$
P_{\text {uow }}(x, y)=P_{u}\left(x^{n} y^{m}, y\right) P_{w}(x, y) .
$$

Lemma 5.2. (Word Polynomial Arises From Matrix Substitution) Let x, y, z be commuting indeterminates. Then

$$
w\left(\left[\begin{array}{ll}
x & z \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{cc}
x^{n} y^{m} & P_{w}(x, y) z \\
0 & 1
\end{array}\right] .
$$

2 Word Equations Solvable By Radicals

- Certain word equations, such a

$$
X A X A X=B
$$

have solutions in terms of radicals:

$$
X=A^{-1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 3} A^{-1 / 2}
$$

and are therefore solvable in every uniquely divisible group.
Definition 1. A word w in the alphabet $\{X, A\}$ is totally decomposable if it is the image of the letter X under a composition of maps of the form

- $w \mapsto\left(w A^{k}\right)^{m} w \quad$ for $m \geq 1, k \geq 0$;
- $w \mapsto w A$;
$\bullet w \mapsto A w$.
Lemma 2.1. If w is totally decomposable, then the word equation

$$
w(X, A)=B
$$

is solvable by radicals in any uniquely divisible group.

3 Conjectured Classification

- We prove that certain equations, such as

$$
X^{2} A X=B
$$

have no solution in terms of radicals.

- In fact, we construct uniquely divisible groups in which they have no solution at all.
Conjecture 3.1. Let w be a finite word in the al phabet $\{X, A\}$. The following are equivalent.

1. w is totally decomposable.
2. $w(X, A)=B$ has a solution in terms of radicals.

6 Proof Sketch

- The group G is constructed from an infinite collection of $p q$-groups G_{1}, G_{2},

$$
G=\prod_{i=1}^{\infty} G_{i} / \bigoplus_{i=1}^{\infty} G_{i}
$$

- The orders of the G_{i} are chosen using Dirichlet's theorem on primes in arithmetic progressions so that any prime p divides $\# G_{i}$ for only finitely many i.
- This gives a uniquely divisible group because of the following simple observation.
Lemma 6.1. Let G be a finite group of order n. If m and n are relatively prime, then every element of G has a unique m-th root.
- Using some classical results in number theory (related o the Weil Conjectures) we can convert the main result into an efficiently testable condition.

7 An Effective Condition

Corollary. If w is a word in the alphabet $\{X, A\}$ beginning with X, and if $P_{w}\left(x^{2}, y^{2}\right)$ has a factor $f \in$ $\mathbb{Z}[x, y]$ such that f is irreducible in $\mathbb{C}[x, y]$, then w is not universal.

- The word $w=X^{2} A X$ has word polynomial

$$
P_{w}\left(x^{2}, y^{2}\right)=1+x^{2}+x^{4} y^{2},
$$

which is irreducible over \mathbb{C}. It follows that $X^{2} A X=$ B is not solvable by radicals.

- In contrast, the word $v=X A X A X$ has
$P_{v}\left(x^{2}, y^{2}\right)=1+x^{2} y^{2}+x^{4} y^{4}=\left(1+x y+x^{2} y^{2}\right)\left(1-x y+x^{2} y\right.$
Each factor on the right side is irreducible over \mathbb{Z} but
factors over \mathbb{C}.
$-v$ is totally decomposable, so $X A X A X=B$ is solvable by radicals.

4 Our Main Result

Theorem. There exists a uniquely divisible group G with the following property: For all finite words w in the alphabet $\{X, A\}$, if the equation

$$
P_{w}\left(x^{2}, y^{2}\right)=0
$$

has a solution $\left(x_{p}, y_{p}\right) \in(\mathbb{Z} / p \mathbb{Z})^{*} \times(\mathbb{Z} / p \mathbb{Z})^{*}$ for all but finitely many primes p, then there exist elements $A, B \in$ G for which the word equation

$$
w(X, A)=B
$$

has no solution $X \in G$.

