Canonical form of elliptic equations

For elliptic PDEs, the discriminant $B^2 - 4AC < 0$ as $b^2 - 4ac < 0,$ and the characteristic equations

$\displaystyle \frac{dy}{dx}$ $\displaystyle =$ $\displaystyle \frac{- (-b - \sqrt{b^2 - 4ac})}{2a}$ (2.18)
$\displaystyle \frac{dy}{dx}$ $\displaystyle =$ $\displaystyle \frac{- (-b + \sqrt{b^2 - 4ac})}{2a}$ (2.19)

gives complex conjugate coordinates, say $\xi$ and $\eta.$ Make another transformation from $(\xi, \eta)$ to $(\alpha, \beta)$ such that

$\displaystyle \alpha = \frac{\xi + \eta}{2}, \hspace{2cm} \beta = \frac{\xi - \eta}{2i}$    

i.e.

$\displaystyle \alpha =$   Re$\displaystyle (\xi), \hspace{1cm} \beta =$   Im$\displaystyle {(\xi)},$

using which one will get the canonical form

$\displaystyle u _{\alpha \alpha} + u _{\beta \beta} = \phi(\alpha, \beta, u, u_{\alpha}, u_{\beta}).$

Example 2.4.3   Find the canonical form of the Tricomi equation

$\displaystyle u_{xx} + x u_{yy} = 0, \hspace{1cm} x >0. $

Solution Compare the given equation with the standard form. One gets

$\displaystyle a=1,~b=0~$and$\displaystyle ~c=x.$

% latex2html id marker 6270
$\displaystyle \therefore~\Delta=b^2-4ac=-4x<0,$

which implies that given equation is elliptic for $x>0.$ The corresponding characteristic equations are

$\displaystyle \frac{dy}{dx}$ $\displaystyle =\pm \frac{2\imath \sqrt{x}}{2},$    
$\displaystyle \implies~\frac{3}{2}y$ $\displaystyle \pm \imath x^{\frac{3}{2}}=c_1.$    

Therefore, the canonical variables are

$\displaystyle \xi=\frac{3}{2}y,~\eta=x^{\frac{3}{2}},$

$\displaystyle u_x$ $\displaystyle =\frac{3}{2}\sqrt{x}u_{\eta},$    
$\displaystyle u_y$ $\displaystyle =\frac{3}{2}u_{\xi},$    
$\displaystyle u_{xx}$ $\displaystyle =\frac{3}{4}\frac{1}{\sqrt{x}}u_{\eta}+\frac{9}{4}xu_{\eta \eta},$    
$\displaystyle u_{yy}$ $\displaystyle =\frac{9}{4}xu_{\xi \xi}.$    

Putting these in given equation, one gets

$\displaystyle u_{\eta \eta}+u_{\xi \xi}=-\frac{1}{3x^{\frac{3}{2}}}u_{\eta}=-\frac{1}{3\eta}u_{\eta},$

which means

$\displaystyle u_{\eta \eta}+u_{\xi \xi}=-\frac{1}{3\eta}u_{\eta}.$

Note One can explore further $2$nd linear PDEs with constant coefficient. For operator method read book written by Sankara Rao on PDEs.

Example 2.4.4   Find the canonical form of

$\displaystyle u_{xx}+6u_{xy}-16u_{yy}=0.$

Solution On comparing the given equation with the standard form, one gets

$\displaystyle a=1,~b=6~$and$\displaystyle ~c=-16.$

% latex2html id marker 6304
$\displaystyle \therefore~\Delta=b^2-4ac=100>0,$

which implies that given equation is hyperbolic equation. The corresponding characteristic equations are

$\displaystyle \frac{dy}{dx}=-2,~$and$\displaystyle ~ \frac{dy}{dx}=8$

$\displaystyle \implies~y=-2x+c_1~$and$\displaystyle ~y=8x+c_2.$

Therefore, the canonical variables are

$\displaystyle \xi=y+2x~$and$\displaystyle ~=\eta=y-8x,$

Therefore change of variables

$\displaystyle u_x$ $\displaystyle =2u_{\xi}-8u_{\eta},$    
$\displaystyle u_y$ $\displaystyle =u_{\xi}+u_{\eta},$    
$\displaystyle u_{xx}$ $\displaystyle =4u_{\xi \xi}-32u_{\xi \eta}+64u_{\eta \eta},$    
$\displaystyle u_{yy}$ $\displaystyle =u_{\xi \xi}+2u_{\xi \eta}+u_{\eta \eta}.$    

Putting these in given equation, one gets

$\displaystyle u_{\xi \eta}=0.$

This is the required canonical form.

Example 2.4.5   Find the canonical form of

$\displaystyle u_{xx}-6u_{xy}+9u_{yy}=xy^2.$

Solution On comparing the given equation with the standard form, one gets

$\displaystyle a=1,~b=-6~$and$\displaystyle ~c=9.$

% latex2html id marker 6335
$\displaystyle \therefore~\Delta=b^2-4ac=0,$

which implies that given equation is parabolic equation. The corresponding characteristic equations are

$\displaystyle \frac{dy}{dx}=-3$

$\displaystyle \implies~y=-3x+c_1.$

Therefore, the canonical variables are

$\displaystyle \xi=y+3x~$and$\displaystyle ~=\eta=x^2,$

Therefore change of variables

$\displaystyle u_x$ $\displaystyle =3u_{\xi}+2xu_{\eta},$    
$\displaystyle u_y$ $\displaystyle =u_{\eta},$    
$\displaystyle u_{xx}$ $\displaystyle =9u_{\xi \xi}+12xu_{\xi \eta}+4x^2u_{\eta \eta}+2u_{\eta},$    
$\displaystyle u_{xy}$ $\displaystyle =3u_{\xi \xi}+2x u_{\eta \xi},$    
$\displaystyle u_{yy}$ $\displaystyle =u_{\xi \xi}.$    

Putting these in given equation, one gets

$\displaystyle 4x^2u_{\eta \eta}+2u_{\eta}=xy^2.$

$\displaystyle \implies~u_{\eta \eta}=\frac{(\xi-3\sqrt{x})^2}{4\sqrt{\eta}}-\frac{u_{\eta}}{2\eta}.$

This is the required canonical form.