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1 Ramsey-Cass-Koopmans model
The “workhorse model” of modern macroeconomics.

Authors: Frank Ramsey (1928), David Cass (1965), Tjalling Koopmans (1965)

Assumptions similar to the Solow-Swan model:

• Closed economy

• No government (for now)

• Single, homogenous final good with its price normalized to 1 in each period (all variables are expressed
in real terms)

• All households supply a unit of labor, number of people equal to number of workers

• Output is produced according to a neoclassical production function

• Two types of representative, optimizing agents:

– Firms
– Households

• Households are solving a utility maximizing problem – we have a well defined welfare measure

1.1 Production function
A production function describes how capital K and labor L is transformed into output Y using technology
A, and is written in its most general form as Yt = F (Kt, Lt, At).

A neoclassical production function F : R3
+ → R+ has following properties:

• Continuous and at least twice differentiable

• Constant returns to scale in K and L. Increasing both capital and labor inputs by a certain proportion
translates to increase of output produced by that same proportion:

F (γK, γL,A) = γF (K,L,A) = γY for all γ > 0

• Positive but diminishing marginal products of K and L:

∂F (K,L,A)
∂K

≡ FK (K,L,A) > 0 ∂F (K,L,A)
∂L

≡ FL (K,L,A) > 0

∂2F (K,L,A)
∂K2 ≡ FKK (K,L,A) < 0 ∂2F (K,L,A)

∂L2 ≡ FLL (K,L,A) < 0

• Inada conditions:

lim
K→0

FK (K,L,A) =∞ lim
L→0

FL (K,L,A) =∞

lim
K→∞

FK (K,L,A) = 0 lim
L→∞

FL (K,L,A) = 0
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The assumption of constant returns to scale has important implications. First, it makes the number of firms
indeterminate, as the economy behaves identically in the case of one firm that employs all resources and in
the case of M firms, each employing a 1/M fraction of all resources. Therefore we often assume that the
firms sector is represented by a single representative firm. Second, the economic profits of the firms sector
are equal to zero. To show that, we will need to use a mathematical theorem.

Definition
Let X ∈ N. A function g : RX+2 → R is homogenous of degree m in x ∈ R and y ∈ R if

g (γx, γy, z) = γmg (x, y, z) for all γ ∈ R+ and z ∈ RX

According to the above definition, a neoclassical production function is homogenous of degreee one in capital
K and labor L.

Euler’s Homogeneous Function Theorem
Suppose that g : RX+2 → R is differentiable in x ∈ R and y ∈ R, with partial derivatives denoted by gx and
gy, and is homogeneous of degree m in x and y. Then:

mγm−1g (x, y, z) = gx (x, y, z)x+ gy (x, y, z) y for all x ∈ R, y ∈ R and z ∈ RX

Moreover, gx (x, y, z) and gx (x, y, z) are themselves homogeneous of degree m− 1 in x and y.

Proof
Differentiate the definition for function homogenous of degree m with respect to γ:

mγm−1 (x, y, z) = gx (γx, γy, z)x+ gy (γx, γy, z) y

Setting γ = 1 proves the first result of the theorem. To obtain the second result, differentiate the definition
for function homogenous of degree m with respect to x:

gx (γx, γy, z) · γ = γmgx (x, y, z)
gx (γx, γy, z) = γm−1gx (x, y, z)

In our context, the theorem translates to the following results:

F (K,L,A) = FK (K,L,A) ·K + FL (K,L,A) ·N

and:
FK (γK, γL,A) = FK (K,L,A)

1.2 Firms
Representative firms produce according to the neoclassical production function:

Yt = F (Kt, Lt, At)

where Y is real GDP, K is capital stock, A denotes the technology/productivity level and L is employment.
Firms want to maximize their profits:

max Πt = F (Kt, Lt, At)− wtLt − rktKt

where rk denotes rental cost of capital. The rental cost of capital is related to the real interest rate in the
financial market in the following way:

rt = rkt − δ
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The households are indifferent between allocating assets in the financial market, yielding return r, and own-
ing physical capital, yielding net return of rk − δ.

Let us rewrite the production function in intensive form (per worker):

yt ≡
Yt
Lt

= 1
Lt
F (Kt, Lt, At) = F

(
Kt

Lt
,
Lt
Lt
, At

)
= F (kt, 1, At) ≡ f (kt)

where y ≡ Y/L denotes GDP per worker and k ≡ K/L denotes capital stock per worker.

The profit maximization problem using per worker variables is:

max Πt = Lt
[
f (kt)− wt − rkt kt

]
Firms will choose employment level L and capital per worker k given wage w and capital rental cost rk.

First order conditions:

kt : Lt
[
f ′ (kt)− rkt

]
= 0

Lt : f (kt)− wt − rkt kt = 0

Simplify and rewrite:

rkt = f ′ (kt)
wt = f (kt)− rkt kt = f (kt)− f ′ (kt) kt

The real interest rate is given by:
rt = rkt − δ = f ′ (kt)− δ

We can verify that due to perfect competition and constant returns to scale economic profits are zero:

Π = Lt
[
f (kt)− wt − rkt kt

]
= Lt [f (kt)− [f (kt)− f ′ (kt) kt]− f ′ (kt) kt] = 0

The above result was guaranteed by the Euler theorem.

1.3 Households
Representative, infinitely lived households solve the following utility maximization problem:

max U0 =
∞∑
t=0

βtNt
c1−θ
t − 1
1− θ

subject to Assetst+1 = wtLt + (1 + rt)Assetst − Ct, t = 0, 1, . . . ,∞

where β is the discount (impatience) factor, N denotes population, c stands for consumption per capita,
θ > 0 is a parameter which we will discuss in a moment, Assets denote total assets of the household sector,
r is the real interest rate, w denotes the wage earned by workers and C = c ·N is the total consumption of
households. We also assume that all agents are working, so that Lt = Nt.

The instantaneous utility function,
(
c1−θ − 1

)
/ (1− θ) is a Constant Relative Risk Aversion (CRRA) func-

tion and can be thought of as a generalization of the familiar logarithmic function. One can show using
L’Hôpital’s rule (H) that as θ → 1, the CRRA function becomes the logarithmic function:

lim
θ→1

c1−θ − 1
1− θ = lim

θ→1

exp [(1− θ) ln c]− 1
1− θ = (H) = lim

θ→1

exp [(1− θ) ln c] · (− ln c)
−1 = ln c
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The parameter θ measures risk aversion of the agent. In our context this will mean that an agent with high θ
will prefer smooth and stable paths of consumption relative to ones that imply large changes in consumption
over time. The shape of the CRRA function for various levels of θ can be seen below:

0

u

c

1

θ = 0

θ = 0.5

θ = 1

θ = 2

We will assume that the population grows at a constant rate n, that is:

Nt+1 = (1 + n)Nt and Nt = (1 + n)tN0

Now we will rewrite the original problem in per capita terms. For the utility function it is easy:

U0 =
∞∑
t=0

βt (1 + n)tN0
c1−θ
t − 1
1− θ = N0

∞∑
t=0

[β (1 + n)]t c
1−θ
t − 1
1− θ

Since the utility orderings are invariant with respect to monotonic transformations, we can without loss of
generality “forget” about the initial population size N0 by dividing the original utility function by N0.

The budget constraint is also easy to reformulate, just be careful about the distinction between periods
t and t+ 1:

Assetst+1 = wtLt + (1 + rt)Assetst − Ct | : Nt
Assetst+1

Nt
= wtLt

Nt
+ (1 + rt)Assetst

Nt
− Ct
Nt

Assetst+1

Nt+1

Nt+1

Nt
= wt + (1 + rt) at − ct

(1 + n) at+1 = wt + (1 + rt) at − ct

where we define per capita assets at ≡ Assetst/Nt. Notice how Assetst+1/Nt 6= at+1 and we have to take
into account population growth. We are now ready to solve the problem using the Lagrangian:

L =
∞∑
t=0

[β (1 + n)]t
{
c1−θ
t − 1
1− θ + λt [wt + (1 + rt) at − ct − (1 + n) at+1]

}
In each time period t the choice variables for this problem are consumption per capita in the current period
ct and assets per capita in the next period at+1. It may be easier to derive the first order conditions if we
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expand the Lagrangian first:

L = . . .+ [β (1 + n)]t
{
c1−θ
t − 1
1− θ + λt [wt + (1 + rt) at − ct − (1 + n) at+1]

}

+ [β (1 + n)]t+1

{
c1−θ
t+1 − 1
1− θ + λt+1 [wt+1 + (1 + rt+1) at+1 − ct+1 − (1 + n) at+2]

}
+ . . .

First order conditions:

ct : [β (1 + n)]t
{
c−θt + λt [−1]

}
= 0

at+1 : [β (1 + n)]t {λt [− (1 + n)]}+ [β (1 + n)]t+1 {λt+1 [(1 + rt+1)]} = 0

Simplify and rewrite:

λt = c−θt

λt = βλt+1 (1 + rt+1)

Resulting Euler equation:
c−θt = βc−θt+1 (1 + rt+1)

Notice that if θ = 1, the equation can be written in the form we have previously seen for the logarithmic
utility function:

ct+1 = β (1 + rt+1) ct
To gain more intuition, we introduce the discount rate ρ which is related to the discount factor β in the
following way:

β = 1
1 + ρ

The discount rate can be interpreted as a “psychological” interest rate of an agent. The Euler equation now
can be written as:

ct+1

ct
=
(

1 + rt+1

1 + ρ

)1/θ

and it implies that consumption increases over time if the real interest rate exceeds the “psychological”
interest rate. In the situation where rt+1 > ρ, an agent willing to save and it means that she consumes
less in the present to consume more in the future. The parameter θ will affect how strongly the difference
between real and “psychological” interest rates influences changes in consumption. The higher the θ, the
smaller are the changes of consumption in response to the difference between the interest rates.
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1.4 General Equilibrium
In a closed economy, the only asset in positive net supply is capital, because all the borrowing and lending
must cancel out within the economy. Hence, equilibrium in the asset market requires a = k. We will modify
the households’ budget constraint accordingly and in the next step plug in the expressions for prices:

(1 + n) at+1 = wt + (1 + rt) at − ct
(1 + n) kt+1 = wt + (1 + rt) kt − ct
(1 + n) kt+1 = [f (kt)− f ′ (kt) kt] + (1 + [f ′ (kt)− δ]) kt − ct
(1 + n) kt+1 = f (kt) + (1− δ) kt − ct

If we “reverse-engineer” this equation into form with aggregate terms by multiplying both sides by Nt, we
get:

Nt
Kt+1

Nt+1

Nt+1

Nt
= Ntyt + (1− δ)Ntkt −Ntct

Kt+1 = Yt + (1− δ)Kt − Ct
Yt = Ct + It

where we used the accounting definition of gross investment, It = Kt+1 − (1− δ)Kt. Unsurprisingly, the
above equation is a variant of the national accounting identity, Y = C + I +G+NX, for a closed economy
(NX = 0) with no government sector (G = 0).

If we go back to the Euler equation, we can replace the real interest rate with the marginal product of
capital net of depreciation:

c−θt = βc−θt+1 (1 + rt+1)
c−θt = βc−θt+1 (1 + f ′ (kt+1)− δ)

The dynamics of the entire economy are summed up by the following two equations:

Euler equation
(
ct+1

ct

)θ
= β (1− δ + f ′ (kt+1))

Resource constraint (1 + n) kt+1 = f (kt) + (1− δ) kt − ct
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1.5 Steady state and transition dynamics
The steady state of an economic system is a situation where all variables grow at constant rates. Often
economists distinguish between the steady state proper and balanced growth path situations, where the
former exhibits zero growth in income per person, while the latter exhibits constant positive growth.

Without technology improvements, variables per person stabilize over time. We can easily find values of
c and k that put the system at rest. Start with the Euler equation:(

css
css

)θ
= β (1− δ + f ′ (kss))

1
β

= 1− δ + f ′ (kss)

f ′ (kss) = 1
β
− (1− δ)

Utilizing our “psychological” interest rate ρ, the Euler equation in the steady state simplifies to:

f ′ (kss) = ρ+ δ

kss k
0

ρ+ δ

f ′(k)

The steady state level of capital per worker is found by equating the marginal product of capital with the
sum of households’ discount rate ρ and depreciation rate δ.

If we assume a specific production function, we can obtain an explicit formula for the steady state level
of capital per worker. For Cobb-Douglas production function:

F (K,L,A) = Kα (AN)1−α

f (k) = kαA1−α

f ′ (k) = αkα−1A1−α

αkα−1
ss A1−α = ρ+ δ

kss =
(
ρ+ δ

αA1−α

) 1
α−1

= A

(
α

ρ+ δ

) 1
1−α
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If we go back to the Euler equation in the form relating real interest rate and discount rate of households:

ct+1

ct
=
(

1 + rt+1

1 + ρ

)1/θ

we can see that consumption will increase over time whenever r > ρ:

r = rk − δ = f ′ (k)− δ

r > ρ −→ f ′ (k)− δ > ρ −→ f ′ (k) > ρ+ δ

If the marginal product of capital exceeds its steady state value (ρ+ δ), consumption increases over time. A
glance at the figure above reveals that consumption will increase over time for k < kss and by analogy will
decrease over time for k > kss:

kss k
0

c

ct+1 > ct ct+1 < ct

If we rearrange the resource constraint, we will find the expression for css given that the capital stock does
not change over time:

(1 + n) kss = f (kss) + (1− δ) k − css
css = f (kss)− (δ + n) kss

Let us see what will happen if the consumption will be chosen above the level guaranteeing stable capital
over time:

ct > f (kt)− (δ + n) kt
(1 + n) kt+1 = f (kt) + (1− δ) kt − ct
(1 + n) kt+1 < f (kt) + (1− δ) kt − [f (kt)− (δ + n) kt]
(1 + n) kt+1 < (1 + n) kt

kt+1 < kt

If consumption will be chosen above the quantity that implies constant capital, capital will decrease over
time as investment will be lower than depreciation. If consumption will be chosen below the constant capital
schedule, capital will increase over time. The relationship is displayed in the graphs below:
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k
0

c

f(k)

(δ + n)k

k
0

c

kt+1 < kt

kt+1 > kt

We can now join the two schedules and produce the full phase diagram:

kss k
0

css

c

kss k
0

css

c
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1.6 Adding technological progress
Uzawa’s Theorem for Balanced Growth Path
If Kt, Yt and Ct grow at constant rates gK , gY and gC for all t ≥ T , population grows at constant rate n,
and the “true” production function F̃

(
Kt, Lt, Ãt

)
exhibits constant returns to scale in Kt and Lt, then:

1. gK = gY = gC

2. Production function has a labor-augmenting representation, that is, there exists a technology term At
that grows at rate g = gY − n and a production function F such that

F̃
(
Kt, Lt, Ãt

)
= F (Kt, AtLt) for all t ≥ T

Sketch of proof1

To prove the first proposition, start with the capital accumulation equation and rewrite it to obtain growth
rate of capital:

Kt+1 = Yt − Ct + (1− δ)Kt

∆Kt+1 ≡ Kt+1 −Kt = Yt − Ct − δKt

gK,t+1 ≡
∆Kt+1

Kt
= Yt
Kt
− Ct
Kt
− δ

If the growth rate of capital gK is to be constant, then both the Y/K and C/Y ratios have to be constant
over time. If that is the case, then the growth rates of those variables have to be equal.

To prove the second proposition, start with the “true” production function:

Yt = F̃
(
Kt, Lt, Ãt

)
Without loss of generality consider now the more relevant case when population grows at rate n < gY = gK
(GDP per capita is increasing over time). Capital grows at the same rate as total output, but pure labor
inputs “fall short”. The constant returns to scale assumption requires that if one input grows at the same
rate as output, the other necessarily has to grow at the same common rate. Thus effective labor input has
to be supplemented by some additional factor. Call it technology A. Then it is true that:

gY = gK = gN + gA −→ g ≡ gA = gY − n

and there exists a representation of the “true” production function F̃ such that:

F̃
(
Kt, Lt, Ãt

)
= F (Kt, AtLt) for all t ≥ T

Note that the Uzawa’s theorem does not mean that all technological improvements increase productivity
of labor directly. It only means that technical innovations predominantly are such that not only do labor
and capital in combination become more productive, but this manifests itself such that we can rewrite the
production function in the form of F (K,AL).

1Full proof can be found in e.g. Acemoglu (2009) Introduction to Modern Economic Growth, pp. 59-64. You can also see
here.
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From now on, we will assume that technology A grows at constant rate g:

At+1 = (1 + g)At

Since technology grows over time, both consumption and capital per worker will grow over time. To find the
balanced growth path of the system, we need to utilize variables per effective units of labor:

Capital per effective labor : k̂ ≡ K

AL
= k

A

Consumption per effective labor : ĉ ≡ C

AL
= c

A

Output per effective labor : ŷ ≡ Y

AL
= y

A

Effective wage : ŵ ≡ w

A

The problem of households is unchanged, but now we want to rewrite the Euler equation in terms of per
effective labor variables: (

ct+1

ct

)θ
= 1 + rt+1

1 + ρ(
ĉt+1At+1

ĉtAt

)θ
= 1 + rt+1

1 + ρ(
ĉt+1

ĉt

)θ
(1 + g)θ = 1 + rt+1

1 + ρ(
ĉt+1

ĉt

)θ
= 1 + rt+1

1 + ρ

1
(1 + g)θ

ĉt+1

ĉt
=
(

1 + rt+1

1 + ρ

)1/θ 1
1 + g

Now we have to restate the problem of the firm:

max Πt = F (Kt, AtLt)− wtLt − rktKt

max Πt = AtLt

[
F

(
Kt

AtLt
, 1
)
− wt
At
− rkt

Kt

AtLt

]
max Πt = AtLt

[
f
(
k̂t

)
− ŵt − rkt k̂t

]
where ŷ = f

(
k̂t

)
≡ F

(
Kt
AtLt

, 1
)
. First order conditions:

k̂t : AtLt

[
f ′
(
k̂t

)
− rkt

]
= 0

Lt : At

[
f
(
k̂t

)
− ŵt − rkt k̂t

]
= 0

Simplify and rewrite:

rkt = f ′
(
k̂t

)
ŵt = f

(
k̂t

)
− rkt k̂t = f

(
k̂t

)
− f ′

(
k̂t

)
k̂t
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Real interest rate:
rt = rkt − δ = f ′

(
k̂t

)
− δ

To find general equilibrium of the economy, start with the households’ budget constraint in per capita terms,
rewrite in per effective labor terms and plug in prices:

(1 + n) at+1 = wt + (1 + rt) at − ct | kt = at

(1 + n) kt+1 = wt + (1 + rt) kt − ct | : At

(1 + n) kt+1

At+1

At+1

At
= ŵt + (1 + rt) k̂t − ĉt

(1 + n) (1 + g) k̂t+1 = f
(
k̂t

)
− f ′

(
k̂t

)
k̂t +

(
1 + f ′

(
k̂t

)
− δ
)
k̂t − ĉt

(1 + n+ g + ng) k̂t+1 = f
(
k̂t

)
+ (1− δ) k̂t − ĉt

We often approximate and set ng ≈ 0. The Euler equation after plugging in the interest rate becomes:

(
ĉt+1

ĉt

)θ
=

1 + f ′
(
k̂t+1

)
− δ

1 + ρ

1
(1 + g)θ

The procedure for finding the steady state (balanced growth path) is the same as before. From Euler equation
we can obtain the balanced growth path level of capital per effective labor:

f ′
(
k̂ss

)
= (1 + ρ) (1 + g)θ − (1− δ)

f ′
(
k̂ss

)
≈ (1 + ρ) (1 + θg)− 1 + δ

f ′
(
k̂ss

)
≈ ρ+ θg + δ

where the first-order approximation (1 + x)n ≈ 1 + nx was used.

Balanced growth path level of consumption per effective labor can be obtained from the resource constraint:

(1 + n+ g + ng) k̂ss = f
(
k̂ss

)
+ (1− δ) k̂ss − ĉss

ĉss ≈ f
(
k̂ss

)
− (δ + n+ g) k̂ss

To relate it to previous results, imagine that g = 0 and technology is normalized to 1: A = 1. Then k̂ = k
and the new expressions reduce to the expressions for the zero technology growth case.

Note how higher rate of technology growth lowers both k̂ss and ĉss. However, you need to remember
that those variables do not impact the welfare of agents directly, as households care for their consumption
per capita c, which increases faster with higher g. Therefore, higher g increases the welfare of agents.
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2 Optimal taxation in the long run
For simplicity, we will assume n = g = 0 and N = A = 1. We will consider two uses for the taxes – lump-sum
transfers to households v and useless from the point of view of households government consumption cG. We
assume that in each period the government’s budget is balanced.

2.1 Households
Utility maximization problem:

max U0 =
∞∑
t=0

βt
c1−θ
t − 1
1− θ

subject to at+1 = (1 + (1− τat ) rt) at + (1− τwt )wt − (1 + τ ct ) ct − τt + vt ∀t = 0, 1, . . . ,∞

where τa is capital gains tax, τw is labor income tax, τ c is consumption tax and τ is lump-sum tax.

Lagrangian:

L =
∞∑
t=0

βt

{
c1−θ
t − 1
1− θ + λt

[
(1 + (1− τat ) rt) at +

(
1− τ lt

)
wt − (1 + τ ct ) ct − τ lst + vt − at+1

]}

FOCs:

ct : βt
{
c−θt − λt (1 + τ ct )

}
= 0 −→ λt = c−θt

1 + τ ct

at+1 : −βtλt + βt+1λt+1
(
1 +

(
1− τat+1

)
rt+1

)
= 0

Euler equation:

c−θt
1 + τ ct

= β
c−θt+1

1 + τ ct+1

(
1 +

(
1− τat+1

)
rt+1

)
(
ct+1

ct

)θ
= 1 + τ ct

1 + τ ct+1
β
(
1 +

(
1− τat+1

)
rt+1

)
2.2 Firms
Profit maximizing problem:

max Πt =
(

1− τft
)

[F (Kt, Lt)− δKt − wtLt]− rtKt ∀t = 0, 1, . . . ,∞

max Πt =
(

1− τft
)
Lt [f (kt)− δkt − wt]− rtLtkt ∀t = 0, 1, . . . ,∞

where τf is firm earnings tax.

FOCs:

kt :
(

1− τft
)
Lt [f ′ (kt)− δ]− rtLt = 0 −→ rt =

(
1− τft

)
[f ′ (kt)− δ]

Lt :
(

1− τft
)

[f (kt)− δkt − wt]− rtkt = 0

−→ wt = f (kt)− δkt −
rtkt(

1− τft
) = f (kt)− f ′ (kt) kt

13



The tax on firm’s earnings lowers the return on capital and incentivises firms to hold less capital.

After-tax profits are still zero (because of price taking behavior):(
1− τft

)
[f (kt)− δkt − [f (kt)− f ′ (kt) kt]]−

(
1− τft

)
[f ′ (kt)− δ] kt =

=
(

1− τft
)

[−δkt + f ′ (kt) kt]−
(

1− τft
)

[f ′ (kt)− δ] kt = 0

Firm earnings tax revenue is equal to:

τft [f (kt)− δkt − [f (kt)− f ′ (kt) kt]] = τft [f ′ (kt)− δ] kt

2.3 Government sector
The government maintains balanced budget. In per capita terms:

cGt + vt = τft [f (kt)− δkt − wt] + τat rtat + τ ct ct + τwt wt + τt

cGt + vt = τft [f ′ (kt)− δ] kt + τat rtat + τ ct ct + τwt wt + τt

2.4 General equilibrium
Market clearing for capital:

kt = at

Rewrite households’ budget constraint to get capital accumulation equation:

kt+1 = (1 + (1− τat ) rt) kt + (1− τwt )wt − (1 + τ ct ) ct − τt + vt

kt+1 = (1 + rt) kt + wt − ct − (τat rtkt + τwt wt + τ ct ct + τt − vt)

kt+1 =
(

1 +
(

1− τft
)

[f ′ (kt)− δ]
)
kt + f (kt)− f ′ (kt) kt − ct −

(
cGt − τ

f
t [f ′ (kt)− δ] kt

)
kt+1 = f (kt) + (1− δ) kt − ct − cGt

Rewrite the Euler equation:(
ct+1

ct

)θ
= 1 + τ ct

1 + τ ct+1
β
(

1 +
(
1− τat+1

) (
1− τft+1

)
[f ′ (kt+1)− δ]

)
2.5 Steady state
Assume constant tax rates:

1 = β
(
1 + (1− τa)

(
1− τf

)
[f ′ (kss)− δ]

)
1
β
− 1 = (1− τa)

(
1− τf

)
[f ′ (kss)− δ]

ρ

(1− τa) (1− τf ) = f ′ (kss)− δ

f ′ (kss) = ρ

(1− τa) (1− τf ) + δ

kt+1 = kt = kss −→ css = f (kss)− δkss − cG

Government consumption lowers private consumption but does not affect steady state capital per worker.

Capital gains and firm earnings taxes lower steady state capital per worker which then translates to lower
steady state private consumption.
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2.6 Chamley-Judd result – redistribution impossibility theorem
Again assume n = g = 0 and N = A = 1 for simplicity. Divide population into two groups: workers and
capitalists. Workers do not save and consume their wages and any transfers they receive. Capitalists both
save and consume. The government wants to redistribute between capitalists and workers. It levies tax on
capital gains and distributes the proceeds to workers.

Worker households

max U0 =
∞∑
t=0

βt
(cwt )1−θ − 1

1− θ

subject to cwt = wt + vt ∀t = 0, 1, . . . ,∞

Solution:
cwt = wt + vt

Capitalist households

max U0 =
∞∑
t=0

βt
(cct)

1−θ − 1
1− θ

subject to at+1 = (1 + (1− τa) rt) at − cct ∀t = 0, 1, . . . ,∞

Solution: (
cct+1
cct

)θ
= β (1 + (1− τa) rt+1)

Firms
max Πt = Lt

[
f (kt)− wt − rkt kt

]
Solution:

rkt = f ′ (kt) −→ rt = f ′ (kt)− δ
wt = f (kt)− f ′ (kt) kt

Government sector

vt = N c

Nw
τart+1at+1

General equilibrium
Capital market equilibrium:

kt = N c

Nw
at −→ vt = τart+1kt+1

Steady state capital per worker:

1 = β (1 + (1− τa) [f ′ (k)− δ])

f ′ (k) = ρ

1− τa + δ

Steady state capitalists’ consumption:

a = (1 + (1− τa) r) a− cc

cc = (1− τa) ra = (1− τa) rN
w

N c
k

cc = (1− τa) N
w

N c
[f ′ (k)− δ] k
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Steady state workers’ consumption:

cw = f (k)− f ′ (k) k + τa [f ′ (k)− δ] k

To demonstrate the result, it suffices to show that workers’ consumption depends positively on the steady
state stock of capital per worker:

∂cw

∂k
= f ′ (k)− [f ′′ (k) k + f ′ (k)] + τa [f ′′ (k) k + f ′ (k)− δ]

= −f ′′ (k) k + τa [f ′′ (k) k + f ′ (k)− δ]

= (τa − 1)︸ ︷︷ ︸
<0

f ′′ (k)︸ ︷︷ ︸
<0

k + τa
ρ

1− τa > 0

It turns out that it is impossible to increase steady state consumption of workers by taxing capitalists. Tax-
ing capitalists reduces steady state capital stock and lowers wages. Even if all of the revenue from taxation
is given to workers in transfer, the loss in wages is greater than the gain from the transfer.

See e.g. here for conditions under which the above result might not hold. For example, Aiyagari (1995)
shows that with incomplete insurance markets and borrowing constraints, the optimal capital gains tax rate
is positive, even in the long run.
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